SOCY7706: Longitudinal Data Analysis Instructor: Natasha Sarkisian Introduction to Managing Longitudinal Data

Many longitudinal datasets are quite complex and require substantial data management efforts prior to use. Datasets can also vary considerably in terms of the ways that data are organized. We will look at Health and Retirement Study data in order to learn the basics of longitudinal data management. If interested, you can register to access the full data and get documentation at: http://hrsonline.isr.umich.edu/

Combining datasets

There are two commands in Stata for combining files: append and merge.

Appending datasets

Append works for datasets that both have the same set of variables but different observations – for example, when two waves of data are stored in separate files and variables have exactly the same variable names. Then we can open one dataset and then type:

```
use dataset1.dta, clearappend using dataset2.dta
```

Or we could just type:

. append using dataset1 dataset2

In longitudinal context, we should make sure to create a time indicator to distinguish waves before appending. We will do that with two waves of HRS -2006 and 2008.

```
. cd "L:\socy7706\"
. use HO8A R.dta
. keep HHID PN LSUBHH LPN SP LCSR LFAMR LFINR LA099 LA100 LA019
. gen wave=2008
. rename (L*) (*)
. des
Contains data from L:\socy7706\H08A R.dta
  obs: 17,217
 vars:
                                                   8 Feb 2011 09:43
               11
 size: 602,595 (99.9% of memory free)
              storage display value e type format label
variable name type format
                                                  variable label
HHID str6 %9s
PN str3 %9s
SUBHH str1 %9s
PN_SP str3 %9s
CSR byte %8.0g
FAMR byte %8.0g
FINR byte %8.0g
A019 int %8.0g
A099 byte %8.0g
                                                   HOUSEHOLD IDENTIFICATION NUMBER
                                                  RESPONDENT PERSON IDENTIFICATION NUMBER
                                                  2008 SUB HOUSEHOLD IDENTIFICATION NUMBER
                                                  2008 SPOUSE/PARTNER PERSON NUMBER
                                                  2008 WHETHER COVERSHEET RESPONDENT
                                                  2008 WHETHER FAMILY RESPONDENT
                                                  2008 WHETHER FINANCIAL RESPONDENT
                                                 R CURRENT AGE CALCULATION
                                                 NUMBER OF RESIDENT CHILDREN
```

- . save short_2008.dta
- . use H06A_R.dta, clear
- . keep HHID PN KSUBHH KPN SP KCSR KFAMR KFINR KA099 KA100 KA019
- . gen wave=2006
- . rename (K*) (*)
- . des

Contains data from L:\socy7706\H06A_R.dta
obs: 18,469
vars: 11
size: 775,698 (99.8% of memory free)

8 Feb 2011 11:51

variable name	storage type	display format	value label	variable label
HHID PN SUBHH PN_SP CSR FAMR FINR A019 A099 A100	byte int double	%9s %9s %9s %9s %8.0g %8.0g %8.0g %8.0g %10.0g		HOUSEHOLD IDENTIFICATION NUMBER RESPONDENT PERSON IDENTIFICATION NUMBER 2006 SUB HOUSEHOLD IDENTIFICATION NUMBER 2006 SPOUSE/PARTNER PERSON NUMBER 2006 WHETHER COVERSHEET RESPONDENT 2006 WHETHER FAMILY RESPONDENT 2006 WHETHER FINANCIAL RESPONDENT R CURRENT AGE CALCULATION NUMBER OF RESIDENT CHILDREN COUNT OF NONRESIDENT KIDS
wave	float	%9.0g		

- . save short_2006.dta
- . append using short 2008.dta
- . tab wave

 wave	Freq.	Percent	Cum.
2006 2008	18,469 17,217	51.75 48.25	51.75
 Total	35,686	100.00	

Then we can save the resulting merged file.

Or we could create a wave indicator on the go by specifying:

- . append using short_2008.dta, gen(indicator)
- . tab indicator

We can keep adding more waves to this dataset – the result will be adding more observations. We term that type of data setup as data being in the long format because different time points are represented by different observations, i.e., additional lines in the data.

When using append, beware of different variable names across waves! If two variables have different names, they will not be matched and appear as separate variables, with the corresponding observations from the other wave missing.

Even if variables are named the same, make sure there are no differences in the way things are coded across waves (e.g., 0 & 1 in one but 1 & 2 in another). If variable or value labels for some variables differ across appended dataset, the ones from the first dataset will be used.

Also note that both files we took for this exercise are respondent-level files —you cannot match files from different levels to each other using append. You can only stack "respondent" files with "respondent" files and "household" files with "household" files — combining them would require a different procedure based on merge command, which we will discuss next. It also would not make sense to use append to match the files from different modules (e.g., A_R and B_R) from the same wave because they contain different variables from the same people, and append does not match people.

Merging datasets

Another way to combine datasets is to create a wide format file. That is done using merge. There are four types of merges we could do: 1:1, 1:m, m:1, and m:m.

Merging 1:1

We will start with the simplest case, 1:1, and merge two respondent-level files. For that, however, we need to understand that there are different types of IDs in HRS:

```
. des

Contains data from L:\socy7706\H08A_R.dta
obs: 17,217
vars: 35
size: 1,842,219 (99.6% of memory free)

storage display value
variable name type format label variable label

HHID str6 %9s HOUSEHOLD IDENTIFICATION NUMBER
PN str3 %9s RESPONDENT PERSON IDENTIFICATION NUMBER
LSUBHH str1 %9s 2008 SUB HOUSEHOLD IDENTIFICATION NUMBER
LSUBHH str1 %9s 2008 SUB HOUSEHOLD IDENTIFICATION NUMBER
LSUBHH str1 %9s 2008 SUB HOUSEHOLD IDENTIFICATION NUMBER
LSNBH str1 %9s 2008 SUB HOUSEHOLD IDENTIFICATION NUMBER
LSNBH Str1 %9s 2008 SPOUSE/PARTNER PERSON NUMBER
LSNB byte %8.0g 2008 WHETHER FAMILY RESPONDENT
LFAMR byte %8.0g 2008 WHETHER FAMILY RESPONDENT
LFINR byte %8.0g 2008 WHETHER FINANCIAL RESPONDENT
LFINR byte %8.0g 2008 WHETHER FINANCIAL RESPONDENT
```

In this file, every person who responded is uniquely identified with HHID and PN. If we need to merge such a file with another respondent's file, we would match them on these two variables:

. merge 1:1 HHID PN using H06A R.dta

```
Result # of obs.

not matched 2,700
from master 724 (_merge==1)
from using 1,976 (_merge==2)

matched 16,493 (_merge==3)
```

We need to carefully assess the results of merge and make sure these numbers make sense. Note the terminology – from master means from the file that was open when the merge was initiated; from using means from the file that was specified after "using" in the merge command.

Here are all the possibilities for codes in this table:

numeric code	equivalent word (results)	description
1 2 3 4	<pre>master using match match_update match_conflict</pre>	observation appeared in master only observation appeared in using only observation appeared in both observation appeared in both, missing values updated observation appeared in both,
		conflicting nonmissing values

Note: If codes of both 4 and 5 could pertain to an observation, then 5 is used.

Most cases give us a perfect merge – but there are some cases that are in 2006 dataset but not in 2008 (from using) and those that are in 2008 but not in 2006 (from master). Here, both types of situations are possible, and it makes sense that there are more cases that drop out from 2006 to 2008 than those that appear in 2008 but not in 2006. It would be easier to investigate these patterns if we started merging at wave 1 of the data.

Codes 4 and 5 can arise only if the update option is specified. Update option (as well as replace option) performs an update merge rather than a standard merge. In a standard merge, the data in the master always have priority and do not get changed. If both the master and using datasets contain the same variable but with different values, then matched observations will contain values from the master dataset, even if these values are missing in the master dataset, and unmatched observations will contain values from either master or using, depending on where these observations are from.

If the update option is specified, then matched observations will update missing values from the master dataset with values from the "using" dataset. Nonmissing values in the master dataset will be unchanged.

If replace option is specified, then matched observations will contain values from the "using" dataset, unless these values are missing, in which case the values from the master dataset are retained.

Merging 1:m and m:1

In situations when the data have some kind of nested structure (either because of the longitudinal component or because of another type of multilevel design such as individuals nested within households), we will often need to do merges where one case in file 1 will be matched to multiple ones in file 2, or vice versa. For instance, if one file has those characteristics of individuals that do not change over time (birth year, race/ethnicity, gender, etc.) and the other has time-varying data with multiple observations per person, then one unit of file 1 is person, and each person might be matched to multiple time-points in file 2. Or a single household may be matched to multiple individuals within household if multiple persons were interviewed in all or some households.

For our example, if we would want to merge information from household file to the individual file that we just created, we would want to match them on HHID and the SUBHH of the corresponding wave. SUBHH is used because households change across waves as individuals divorce or remarry.

```
. use HO8A H.dta, clear
Contains data from L:\socy7706\H08A H.dta
 obs: 11,897 vars: 43
 size: 1,046,936 (99.8% of memory free)
______
storage display value variable name type format label variable label
______
HHID str6 %9s
LSUBHH str1 %9s
KSUBHH str1 %9s
LPN_CS str3 %9s
LPN_FAM str3 %9s
LPN_FIN str3 %9s
LPN_NCS str3 %9s
LPN_NCS str3 %9s
LPN_NFAM str3 %9s
LPN_NFAM str3 %9s
LPN_NFAM str3 %9s
                                              HOUSEHOLD IDENTIFICATION NUMBER
                                                2008 SUB HOUSEHOLD IDENTIFICATION NUMBER
                                                2006 SUB HOUSEHOLD IDENTIFICATION NUMBER
                                                2008 COVERSCREEN RESP PERSON NUMBER
                                                2008 FAMILY RESP PERSON NUMBER
                                               2008 FINANCIAL RESP PERSON NUMBER
                                              2008 FINANCIAL RESP PERSON NORDER.
2008 NON-COVERSCREEN RESP PERSON NUMBER
2008 NON-FAMILY RESP PERSON NUMBER
2008 NON-FINANCIAL RESP PERSON NUMBER
. merge 1:m HHID LSUBHH using HO8A R.dta
    Result # of obs.
    not matched
                                        17,217 (merge==3)
    _____
```

We can then add more datasets:

```
. merge 1:1 HHID PN using H06A_R.dta
_merge already defined
r(110);
. rename _merge merge 08 AH AR
```

To avoid the need to rename _merge, we can give it a name right away using gen option, so we will do that for the next merge – here, we are merging individual data from 2008 with the addition of household information to individuals in 2006, so it's a 1:1 merge again.

```
. merge 1:1 HHID PN using HO6A_R.dta, gen(merge_O6_AR)
```

```
Result # of obs.

not matched 2,700
from master 724 (_merge==1)
from using 1,976 (_merge==2)

matched 16,493 (_merge==3)
```

And now merging in the household information from 2006:

```
. merge m:1 HHID KSUBHH using H06A_H.dta, gen(merge_06_AH)
```

Result	# of obs.	
not matched from master from using		(_merge==1) (_merge==2)
matched	18,634	(_merge==3)

The important aspect of the merge process is to make sure that merging frequencies correspond to what you know about the data. For instance, if the data are longitudinal and no new cases are added after the first wave, then, if you start merging with wave 1, you can have observations that are in master but not using, but you cannot have observations that are in using but not in master.

Merging m:m

Such merges are pretty much not used. There are also examples of other very rare merges, using joinby and cross commands, that are used for very rare cases of combining datasets.

Some useful options of merge (see help merge for more):

keepusing(varlist) specifies the variables from the using dataset that are kept in the merged dataset. By default, all variables are kept.

force allows string/numeric variable type mismatches, resulting in missing values from the using dataset. If omitted, merge issues an error; if specified, merge issues a warning.

keep(results) specifies which observations are to be kept from the merged dataset. Using keep(match master), for example, specifies keeping only matched observations and unmatched master observations after merging.

Note that the biggest problems with mering stem from problems with the key variable or variables that are used for the merge. If one of your datasets contains duplicate cases, with the

same ID, your merge will fail and you need to deal with duplicates first. If you have multiple observations per person in your dataset and you are trying to merge only on ID, that will fail -a merge should be done on both ID and time variable in such cases to avoid problems.

Reshaping datasets

Once we merged datasets from different waves, we end up with a wide format dataset. Wide format and long format each have their own advantages for both data management and analysis. For instance, for a lot of data management, we would typically want to change into long format, so it's only one variable per measure, rather than separate variables for each time point. But imputation is usually done in the wide format. So in most cases, you need to shift back and forth.

Reshaping wide to long

We can change the format it using reshape command; we will first get rid of variables from those waves we do not use, however (otherwise, reshape will assume we have three waves of data for everything and create a lot of blank rows).

```
. drop JSUBHH
```

Next, we need to list stems for all time-varying variables.

Time-varying vs time-invariant is an important distinction. Our dependent variable in longitudinal analysis should always be time-varying, while independent ones could be either, but some techniques restrict it further. In a wide format, we do not have a separate variable for time, but we will create it in the long format.

```
. reshape long @SUBHH @PN_CS @PN_FAM @PN_FIN @PN_NCS @PN_NFAM @PN_NFIN @A020 @A022 @A023 @A024 @A025 @A026 @A027 @A030 , j(wave) string i(HHID PN) (note: j = K L)
```

```
wide -> long
Data
Number of obs. 19199 -> 38398
Number of variables 142 -> 128
j variable (2 values) -> wave
xij variables:
                      KSUBHH LSUBHH -> SUBHH
                      KPN CS LPN_CS -> PN_CS
                     KPN_FAM LPN_FAM -> PN_FAM
                     KPN_FIN LPN_FIN -> PN_FIN
                                    ->
                                         PN_NCS
                     KPN NCS LPN NCS
                        FAM LPN_NFAM ->
FIN LPN_NFIN ->
KA020 LA020 ->
                    KPN NFAM LPN NFAM
                                          PN NFAM
                    KPN NFIN LPN NFIN
                                          PN NFIN
                                          A0\overline{2}0
                         KA022 LA022 ->
                                         A022
                         KA023 LA023 -> A023
                         KA024 LA024 -> A024
                         KA025 LA025 -> A025
                         KA026 LA026 -> A026
                        KA027 LA027 -> A027
                        KA030 LA030 -> A030
______
```

To bring it back into wide, we could just type:

. reshape wide

And back to long:

. reshape long

In long, we probably would want to make some things more clear:

```
. replace wave="2006" if wave=="K"
wave was str1 now str4
(19199 real changes made)
```

- . replace wave="2008" if wave=="L"
 (19199 real changes made)
- . destring wave, replace wave has all characters numeric; replaced as int
- . tab wave

Cum.	Percent	Freq.	wave
50.00	50.00 50.00	19,199 19,199	2006 2008
	100.00	38,398	Total

Now if we would want to return to wide format, we would need to specify the model again because we changed wave.

Reshaping long to wide

. reshape wide SUBHH PN_CS PN_FAM PN_FIN PN_NCS PN_NFAM PN_NFIN A020 A022 A023 A024 A025 A026 A027 A030 , j(wave) i(HHID PN) (note: $j = 2006 \ 2008$)

Data	long	->	wide
Number of obs.	38398	->	19199
Number of variables	128	->	142
<pre>j variable (2 values) xij variables:</pre>	wave	->	(dropped)
	SUBHH	->	SUBHH2006 SUBHH2008
	PN CS	->	PN CS2006 PN CS2008
	PN FAM	->	PN FAM2006 PN FAM2008
	PN FIN	->	PN FIN2006 PN FIN2008
	PN NCS	->	PN NCS2006 PN NCS2008
	PN_NFAM	->	PN_NFAM2006
	PN_NFIN	->	PN_NFIN2006 PN_NFIN2008
	_A020	->	$A0\overline{2}02006 \ A0202\overline{0}08$
	A022	->	A0222006 A0222008
	A023	->	A0232006 A0232008
	A024	->	A0242006 A0242008
	A025	->	A0252006 A0252008
	A026	->	A0262006 A0262008
	A027	->	A0272006 A0272008
	A030	->	A0302006 A0302008

And now we can easily go back and force again.

```
. reshape long
(note: j = 2006 2008)
```

```
______
Number of obs.
Number of variables
                                       19199 -> 38398
                                          142 -> 128
                                                   -> wave
j variable (2 values)
xij variables:

      SUBHH2006
      SUBHH2008
      ->
      SUBHH

      PN_CS2006
      PN_CS2008
      ->
      PN_CS

      PN_FAM2006
      PN_FAM2008
      ->
      PN_FAM

      PN_FIN2006
      PN_FIN2008
      ->
      PN_FIN

      PN_NCS2006
      PN_NCS2008
      ->
      PN_NCS

                    PN NFAM2006 PN NFAM2008 -> PN NFAM
                    PN NFIN2006 PN NFIN2008 -> PN NFIN
                            A0202006 A0202008 -> A020
                           A0222006 A0222008 -> A022
                           A0232006 A0232008 -> A023
                           A0242006 A0242008 -> A024
                            A0252006 A0252008 -> A025
                           A0262006 A0262008 -> A026
                           A0272006 A0272008 -> A027
                           A0302006 A0302008 -> A030
```

As was the case with merge, if id variables do not uniquely identify observations, you will get an error. Another reason for an error would be if a variable for which you do not specify a stem because it is supposed to be time invariant does in fact have different values for different observations. If you get this error, you can then use "reshape error" command to pinpoint where your time-invariant variables actually do vary even though they should not – it will list problem observations when reshape fails.

Reshaping into long will generate rows that are entirely empty for those people who were missing data on all variables for a specific year because they did not participate (e.g., attrition). It makes sense to drop those:

```
. egen all=rowmiss( A020- A030)
```

. tab	all all 	Freq.	Percent	Cum.
	1 2 3 4 5 6 8	59 1,351 2 6 22,848 11,589 2,543	0.15 3.52 0.01 0.02 59.50 30.18 6.62	0.15 3.67 3.68 3.69 63.20 93.38 100.00

Total | 38,398 100.00

[.] keep if all<8

Why do we care to get rid of empty rows? It obscures how much data we actually have and makes us believe we have balanced data.

Balanced vs unbalanced panel data:

Balanced = each unit is observed the same number of times (T) Unbalanced = some units have fewer time points than others

Reasons for being unbalanced: