SC708 Hierarchical Linear Modeling
Instructor: Natasha Sarkisian
Class notesHLM Diagnostics

Like OLS, HLM models rely on certain assumptions that have to be satisfied in order for
regression coefficients to be unbiased and efficient estimates ofrtivaqiars of interest.
Therefore, it is important to watch out for possible assumption violations and to take steps to
prevent themWe will address the issues of model specification, homoscedasticity, normality of
level 1 and level 2 residuals, and lingari

1. Model specification.

In HLM models, the issue of model specification c@ms two main questions: (1) Dice

include the right fixed effects? (B)id we include the right random components? As we
discussed, when specifying your model, you shoelgl heavily on your theory as well as utilize
hypothesis testindBut there are some additional steps you can take to prevent model
misspecification.

To prevent misspecification of fixed effects:

1 Consider including aggregates of level 1 variablieis always possible that what appears
to be an effect of a level 1 variable is, in reality,effect of its level 2 aggregate. The
only way to test is to introduce such an aggredgatear, we discussed aggregates to the
mean, but sometimes, it is also gbksto use grouevel standard deviations. For
example, you can use MEANSES to indicate the average level of SES in the school and
SESDEV (withinschool standard deviation) to indicate how diverse each school is in
terms of SES. Such diversity may haveimpact above and beyond the impact of the
average level.

1 Consider including level 2 predictors of level 1 slopes if you find significant variation in
these slopes

1 If the proportion of explained variance-dRuared) is substantially reduced when you add
a fixed effect, that can be a sign of misspecification.

1 Sometimes a fixed effect misspecification (e.g., a nonlinearity) can lead to a
misspecification of the random effects (excluded curvilinear effect may show up as a
significant variance component fdret slope). We will return to the issue of linearity
below.

To prevent the misspecification problems in terms of random components:

1 Always test whether each of your level 1 slopes varies across level 2.enitsy to
estimate eacklope asrandomdowe ver , you have to be carefu
data.

1 The number of iterations can dmgnostid if the data are highly informative, the
algorithm will converge rapidly (e.g. in less than 10 iterations). In contrast, if the model
has an extensiveumber of random effects and the data are relatively sparse, hundreds of
iterations may be needed. In general, you should be cautious in specifyiny level
coefficients as randoiinas the number of random effects grows, the number of
variances/covariancés be estimated increases even faster (for m random predictors,



there are 1+m(m+1)/2 variance covariance components). As the number of random
effects grows, significantly mode information is required to obtain reasonable estimates
of variance/covarianceomponents. The maximum depends on a number of factors: the
magnitude of the variance components, the degree of intercorrelation among the random
effects, the magnitude of sigma squared, and other characteristics of the data.

1 If there are high correlatismamong level coefficients (i.e., slopes for different
variable® correlations with the intercept are ok), the model must be simplified. There
are a number of ways of dealing with it. You can, for example, use factor analysis to
form scales and redudeet number of variables. You can also constrain one or more
random effects to be zero (i.e. keep only the fixed effect for that variable), thus
eliminating the correlation. This works well if that random effect is negligible.

2. Multicollinearity

Like regular OLS, HLM models can be affected by multicollinearity. There are no tools to check
for it in HLM, so you should do some tests before you import your data into HioM s¥ould

check correlations among your independent variables as well as varigatenractors (VIFs)

in another statistical prograr.g. in Stata:

. pwcorr mathach ses female meanses sector size

| mathach  ses female meanses sector size
_____________ + -
mathach | 1.0000
ses| 0.3608 1.0000

female | -0.1231  -0.0679 1.0000
meanses | 0.3437 0.5306 -0.0589 1.0000
sector | 0.2040 0.1896 0.0065 0.3573 1.0000
size | -0.0506 -0.0673 -0.0388 -0.1268 -0.4237 1.0000

. reg mathach ses female meanses sector size

Source | SS df MS Number of obs = 7185
------------- + F( 5, 7179) = 315.35
Model | 61  205.6611 5 12241.1322 Prob>F = 0.0000
Residual | 278671.273 7179 38.8175614 R -squared = 0.1801
------------- + Adj R -squared = 0.1795
Total | 339876.934 7184 47. 3102637 Root MSE = 6.2304

mathach| Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ + .
ses| 2.148034 .1113801 19.29 0.000 1.929697 2.366372
female | -1.321295 .1478042 -8.94 0.000 -1.611034 - 1.031555
meanses | 2.889622 .2206451 13.10 0.000 2.457093 3.32 2151
sector | 1.503238 .1724585 8.72 0.000 1.165169 1.841308
size | .0003457 .0001345 2.57 0.010 .0000821 .0006093
_cons| 12.32108 .2222729 55.43 0.000 11.88536 12.7568

Variable | VIF 1NVIF

meanses| 1.54 0.648947
ses| 1.39 0.717093
sector| 1.38 0.726 733



size| 1.22 0.818586
female| 1.01 0.992362

Mean VIF| 1.31

Different researchers advocate for different cutoff points for VIF. Some say #mgt one of
VIF values is largethan 4, there are some multicollinearity problems associated with that
variable. Others use cutoffs of 5 or even 10.

It is dso useful to check level 2 separately:

. bysort id: egen mathachm=mean(mathach)

. reg mathach meanses sector size if case==1

Source | SS df MS Number of obs = 160
------------- + F( 3, 156)= 8.30
Model | 1087.63418 3 362.544726 Prob>F = 0.0000
Residual | 68 14.85021 156 43.6849372 R -squared = 0.1376
------------- + AdjR -squared = 0.1210
Total | 7902.48439 159 49.7011597 Root MSE = 6.6095

mathach | Coef. Std.Err. t P>|t|] [95% Conf. Interval]
_____________ +

meanses | 4.994022 1.355516 3.68 0.000 2.316488 7.671556

sector | 2.201746 1.253382 1.76 0.081 -.2740427 4.677536

size| .0002882 .000934 0.31 0.758 -.0015568 .0021331
_cons| 11.4176 1.455231 7.85 0.000 8.543103 14. 2921

. vif
Variable | VIF 1NVIF
sector| 1.38 0.726829
size| 1.22 0.819769
meanses | 1.15 0.871633
Mean VIF| 1.25

Once you have your data in HLM and run your modeds, should also watch out for potential
signs of multicollinearity (e.g., large coefficients in opposite directioigh, $standard errors).

3. Homoscedasticity.

In HLM, the levetl error terms should have equal variance acrossfuslts (the assumption
of homoscedasticity dromogeneity of variancé)e.g., all schools should have variances equal
to the other schals in the sample. To test the homogeneity of variance assumption, under Other

SettingsAHy pot heses testing, selecarindesée. domogrene

model. The output looks like this:

Summary of the model specified (in equation forma t)

Level -1 Model



Y = BO + B1*(SES) + R
Level -2 Model
BO = G0O + GO1*(SECTOR) + GO2*(MEANSES) + U0
Bl = G10 + G11*(SECTOR) + G12*(MEANSES)
Iterations stopped due to small change in likelihood func tion
*kkkkkk ITERAT'ON 6 *kkkkkk
Sigma_squared = 36.76611

Tau
INTRCPT1,B0 2.37524

Tau (as correlations)
INTRCPT1,B0 1.000

Random level - 1 coefficient Reliability estimate

INTRCPT1, BO 0.732

The value of the likelihood function at iteration 6 = - 2.325148E+004
The outcome variable is MATHACH

Final e stimation of fixed effects:

Standard Approx.
Fixed Effect Coefficient Error T -ratio d.f. P - value
For INTRCPT1, BO
INTRCPT2, GOO 12.095250 0.198627 60.894 157 0.000

SECTOR, G01 1.224401 0.306117 4.000 157 0.000
MEANSES, G02 5.336698 0.368978 14.463 157 0.000
For SES slope, B1
INTRCPT2, G10 2.935664 0.150690 19.482 7179 0.000
SECTOR, G11 -1.642102 0.233097 -7.045 7179 0.000
MEANSES, G12 1.044120 0.291042 3.588 7179 0.001

The outcome variable is MATHACH

Final estimation of fixed effects
(with robust standard errors)

Standard Approx.
Fixed Effect Coefficient Error T -ratio d.f. P - value
For INTRCPT1, BO
INTRCPT2, GOO 12.095250 0.173679 69.641 157 0.000
SECTOR, G01 1.224401 0.308507 3.969 157 0.000
MEANSES, G02 5.336698 0.334617 15.949 157 0.000
For  SES slope, B1
INTRCPT2, G10 2.935664 0.147576 19.893 7179 0.000
SECTOR, G11 -1.642102 0.237223 -6.922 7179 0.000
MEANSES, G12 1.044120 0.332897 3.136 7179 0.002
Final estimation of variance components:
Random Effect Standard  Variance df Chi -square P -value

Deviation = Component



INTRCPT1, uo 1.54118 2.37524 157 604.29895 0.000
level -1, R 6.06351  36.76611

Statistics for current covariance components model

Deviance = 46502.952743
Number of estimated parameters = 2

Test of homogeneity of level - 1 variance

Chi - square statistic = 244.08638

Number of degrees of freedom = 159

P- value =0.000

This output indicates that for this model, the assumption was violated, so the variance is
heterogeneousNote that this method relies on fitting separate OLS regressions in each of the
groups, so there should be a substantial numbgnoois with a relatively large number of cases
in each group in order for this test to be accurate.

Heterogeneityf variancecan be a nuisance, or it can be substantively interesting. When itis a
nuisance,he causes can be:
1 One or more important levédl predictors may have been omitted from the model.
1 The effects of a level predictor that is random or nonrandomly varying have been
erroneously treated as fixed.
1 Dependent variable is severely skewed.
1 One (or more) of the independent variables has armeam relationship to the dependent
variable that we failed to model correctly.
1 There are outliers or bad data.

Let 6s t thgslopenofiSES:r e e

Test of homogeneity of level - 1 variance
Chi - square statistic = 245.76576
Number of degrees of freedom = 159
P- value =0.000
Still a problemWe coul d consider examining issues of

try to think about heterogeneity as substantively interg@stndmodelit using level 1 predictors
T to see whether there are some predictors that seem to explain differential level 1 variance:

RESULTS FOR HETEROGENEOUS SIGMBQUARED
(macro iteration 4)

Var(R) = Sigma_squared and

log(Sigma_squared) = alpha0 + alphal(MINORITY) + alpha2(FEMALE) + alpha3(SES)
Model for level - 1 variance
Standard
Parameter Coefficient Error Z - ratio P- value

INTRCPT1 ,alpha0 3.67952 0.026787 137.360 0.000



MINORITY ,alphal -0.04998  0.038205 -1.308 0.191
FEMALE ,alpha2 -0.12185 0.03 3969 -3.587 0.001
SES ,alpha3 0.00129 0.026087 0.050 0.961

Summary of Model Fit

Model Number of Deviance
Parameters
1. Homogeneous sigma_squared 10 46494.59261
2. Het erogeneous sigma_squared 13 46480.44853
Model Comparison Chi - square df P - value
Model 1 vs Model 2 14.14407 3 0.003
Test of homogeneity of level - 1 variance
Chi - square statistic = 237.93937
Number of degrees of freedom = 159
P- value =0.000

Looks like gender explains some heterogerieityere is lower amount of unexplained variance

in math achievement among girls. Further, heterogenous model has significantly lower deviance
than the homogenous model. There is still somexplained heterogeneity left, however. Note

that HLM does not allow us to model the residual variance usugy 2 Echoo) characteristics;
anothemultilevel analysis program, MLwiNdoes.

But so far, we did not have gender and minority variabléstine mo d e | i tsel f. So
and see what happens. Letbs try to add ot her

LEVEL 1 MODEL
MATHACH, = B + B, (MINORITY,) + B, (FEMALE,) + B5(SES, - SES ) + 1,
LEVEL 2 MODEL

Boj = Yoo * Y01(SECTOR,) + yo,(MEANSES; - MEANSES ) + ug,

By = ¥10 * v12(SECTOR)) + y,,(MEANSES; - MEANSES ) + uy,

By = Ya0 * 721 (SECTOR)) + 1,,(MEANSES; - MEANSES ) + u,,

By = a0 + 751 (SECTOR) + y,,(MEANSES, - MEANSES )

Sigma_squared = 35.33424

Standard Error of Sigma_squared =  0.60442

Tau
INTRCPT1,BO 2.50575 -0.11413 -1.1574 6
MINORITY,B1 -0.11413 0.98114 0.18246

FEMALE,B2 -1.15746 0.18246 0.86444

Standard Errors of Tau

INTRCPT1,BO 0.53220 0.50638 0.44703

MINORITY,B1 0.50638 0.71802 0.47533
FEMAIE,B2 0.44703 0.47533 0.52350

Tau (as correlations)



INTRCPT1,B0 1.000 -0.073 -0.786
MINORITY,B1 -0.073 1.000 0.198
FEMALE,B2 -0.786 0.198 1.000

Random level - 1 coefficient Reliability estimate
INTRCPTL1, BO 0.504
MINORITY, B1 0.121

FEMALE, B2 0.195

Note: The reliability estimates reported above are based on only 100 of 160
units that had sufficient data for computation. Fixed effects and variance
components are based on all the data.

The outcome variable is MATHACH
Final estimation of fixe d effects
(with robust standard errors)

Standard Approx.
Fixed Effect Coefficient Error T - ratio d.f.
For INTRCPT1, BO
INTRCPT2, GOO 13.493279 0.218255 61.824 157 0.000
SECTOR, G01 1.179093 0.395065 2.985 157
MEANSES, G02 4.257586 0.500135 8.513 157 0.000
For MINORITY slope, B1
INTRCPT2, G10 - 3.800761 0.329691 -11.528 157 0.000
SECTOR, G11 1.859578 0.462451 4.021 157
MEANSES, G12 -0.742032 0.490089 -1.514 157 0.132
For FEMALE slope, B2
INTRCPT2, G20 -1.269669 0.219399 -5.787 157 0.000
SECTOR, G21 0.017264 0.398333 0.043 157
MEANSES, G22 -0.008239 0.435061 -0.019 157 0.985
For  SES slope, B3
INTRCPT2, G30 2.478999 0.144731 17.128 7173 0.000
SECTOR, G31 -1.311409 0.232813 -5.633 7173 0
MEANSES, G32 0.995932 0.315195 3.160 7173 0.002
Final estimation of variance components:
Random Effect Standard  Variance df Chi - square P

Deviation = Component

INTRCPTL, uo 1.58295 2.50575 97 200.38556 0.000

MINORITY slope, Ul 0.99053 0.98114 97 11250013 0.135
FEMALE slope, U2 0.92975 0.86444 97 125.27254 0.028

level -1, R 5.94426  35.3342 4

Note: The chi - square statistics reported above are based on only 100 of 160
units that had sufficient data for computation. Fixed effects and variance
components are based on all the data.

Statistics for current covariance components model

Deviance =46223.669899
Number of estimated parameters = 19

Test of homogeneity of level - 1 variance

Chi - square statistic = 108.42203
Number of degrees of freedom = 99
P- value =0.243

P- value

0.004

0.000

0.966

.000

- value



We no longer detect significant homogeneisyng this test. Notthat now onlyl00out of 160
schoolsare used focalculating the reliability estimates and the-shuare statistics for variance
component§t hat 6s because for some school s, we
girls to reliably calculate the gender slope.

But, if we once agaiexplore if level 1 variance can be explained by our level 1 predictors, we
will still observe some relationships:

RESULTS FOR HETEROGENEOUS SIGMBQUARED
(macro iteration 4)

Var(R) = Sigma_squared and

log(Sigma_squared) = alphaO + alphal(MINORITY) + a Ipha2(FEMALE) + alpha3(SES)
Model for level - 1 variance
Standard
Parameter Coefficient  Error Z -ratio P - value

INTRCPT1 ,alpha0 3.65317 0.026946 135.572 0.000

MINORITY ,alphal -0.13144 0.038616 -3.404 0.001
FEMALE ,alpha2 -0.10502  0.034193 -3.071 0. 003
SES ,alpha3 -0.00702  0.026020 -0.270 0.787

Summary of Model Fit

Model Number of Deviance
Parameters

1. Homogeneous sigma_squared 19 46223.67031

2. Heterogeneous sigma_square d 22 46203.21463

Model Comparison Chi - square df P - value

Model 1 vs Model 2 20.45568 3 0.000

So we observe lesmexplainedrariance among girls and minorities. We might want to explore
what explains the higher variance among boys and whiteswWe.gould consider an interaction

term of SES with gnder and minority status variablewe 6d have to cr 8.at e

If you find a heteroscedasticity problem or a distributional problem (i.e-noomality) but
cannot correct it, you can rely on robust standard errors.

HLM produces two finbtables of fixed effects: one with regular standard errors and one with

robust standard errors. Robust standard errors are standard errors that are relatively insensitive to

misspecification at the levels of the model and the distributional assumptemshdevel. If the
robust and moddbased standard errors differ substantialgt suggests that you have some
problem with normality, homoscedasticity, or linearity, god should further investigathose
HLM assumptions. If it is not possible to cect the problem, you can report robust standard
errors.

Note, however, that the robust standard errors should be trusted only when the number-of higher

level units is moderately large relative to the nemtif explanatory variables at thiggher level.



4. Normality

HLM models assume thdte levetl and level 2rror termsarenormally distributedTo make

sure this assumption will be met, it is important to do some preliminary data screening before
importing data into HLM. It is especially importaotensure that your dependent variable
distribution is as close to normal as possible, but independent variables should be checked as
well. If substantial deviations from normality are identified, consider fixing them with a
transformation. Note that whe&xamining normality of level 2 variables, you should either have
a separate level 2 file or you should limit your analysis to one record per higher level unit.

To do the latter, in Stata we could create a withool id for individuals and then do our
examination taking only the first case in each school:
. bysort id: gen case=_n

. histogram size if case==1
(bin=12, start=100, width=217.75)

T T T
0 1000 2000 3000
size

Looks like a right skew; to find mansformation:
. ladder size if case==1

Transformation formula chi2(2) P(chi2)
cubic size™3 60.02 0.000

square size2 31.36 0.000

identity size 8.37 0.015

square root sqrt(size) 7.18 0.028

log log(size) 16.55 0.000

1/(square root) 1/sqrt(size) 58.10 0.000

inverse 1/size . 0.000

1/square 1/(size”2) . 0.000

1/cubic 1/(size"3) . 0.000



. gladder size if case==1

o cubic square identit
3 T 5 q - p y
8 ® 9 oS
(=] -
g 1 g 1
3 4
8 1 2 1 1
3 1 3 1 3 1
& O - T T T T O T T T o (She ) T T T
0 5.00e+01900e+1050e+2000e+1 0 200000800000600000800000( 0 1000 2000 3000
sqgrt log 1/sqrt
8 4 o 8 4
2 @ g -
o
o b < 4 ® 7
4 ' 8 1
ISEE ~ S 4

O - T T T T O - T T T

0 4

10 20 30 40 50 4 5 6 7 -1 -08 -06 -04 -02

- inverse = 1/square 5 1/cubic
o o + o + 4
S ] g g

8 ] 4

S

g g .

S

3 ) b 4

& 7 S =

T

o

T T © T T

T T T T ©
-.01 -.008 -.006 -.004 -.002 0

T T T T T T T T T
-.0001.00008000060000400002 0O -1.00e860e-®100e-0D0eNV0e-07 0

size
Histograms by transformation

Square root looks the best, so we would generaiadi tha later on import that transformed
variable into HLM:

. gen sizesqrt=sqrt(size)

If a variable contains zero or negative values, you need to add a constant to it before looking for

transformations (such that all values of the variable becomer ldrgn zero)For example:

. sum mathach
Variable | Obs

_____________ +
mathach |

Mean Std. Dev. Min Max

7185 12.74785 6.878246 -2.832  24.993

. ladder mathach if case==1

Transformation formula chi2(2) P(chi2)

cubic mathach”3 19.29 0.000

square mat hach”2 16.12 0.000
identity mathach 18.12 0.000

square root sqrt(mathach) .

log log(mathach) . .

1/(square root) 1/sqrt(mathach) .

inverse 1/mathach 49.83 0.000

1/square 1/(mathach”2) 0.000

1/cubic 1/(mathach”3) 0.000

1C



. gladder mathac h if case==1

cubic square identity
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Histograms by transformation

. gen mathachl=mathach+3

. ladder mathachl if case==1

Transformation formula chi2(2) P(chi2)

cubic mathach1/3 16.03 0.000
square mathach1/2 18.22 0.000

identity mathachl 18.12 0.000

square root sqrt(mathachl) 11.27 0.004

log log(mathach1) . 0.000
1/(square root) 1/sqgrt(mathachl) . 0.000

inverse 1/mathachl . 0.000

1/square 1/(mathach1/2) . 0.000

1/cubic 1/(mathach1/3) . 0.000

. gladder mathach1 if case==1

g cubic < square identity
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Histograms by transformation

If your sample size is large, everything will be significantly different from normal, so you should
either rely on graphical examination (gladder) or randomly select a subsample of your dataset
and dathis type of analysis for that subsample.

11



If as variable is negatively skewed, you might have an easier time finding a transformation for it
after reversing it. To reverse the variable and yet keep all the values positive, you can subtract it
from its maximum value +1; for example:

. sum mathach
Variable | Obs Mean Std. Dev. Min Max

_____________ +
mathach | 7185 12.74785 6.878246 -2.832 249 93

. gen mathachr=24.993+1 - mathach
. sum mathachr
Variable | Obs Mean Std. Dev. Min Max

_____________ +
mathachr| 7185 13.24515 6.878246 .9999999 28.825

As you are examining normality, pay attention to outliers asiwadimetimes, it is useful to tep
code or bottortode outliers in addition to or instead of transforming a variable.

. graph box ses

q -
[ )
a4
1)
g °7
(\‘l -
)
[ ]
[ )
<lr -
. sum ses, detail
ses
Percentiles Smallest
1% -1.848 - 3.758
5% -1.318 -2.838
10% -1.038 - 2.508 Obs 7185
25% -.538 -2.508 Sum of Wgt. 7185
50% .002 Mean .0001434
Largest Std. Dev.  .7793552
75% .602 1.732
90% 1.022 1.762 Variance .6073945
95% 1.212 1.832 Skewness -.2281447
99% 1.512 2.692 Kurtosis 2.620279
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. gen sesl=ses

. replace ses1=1.9 if ses>1.9 & ses<.
(1 real change made)

. replace ses 1=-2.9if ses< -29
(1 real change made)

Neve top-code or bottortode more than 5% of the distribution; better yet, dootdss.
Sometimes transformation might be a better way to bring in outliers so consider both options or a
combination of them.

If you do a good job dealing with normality prebdsand with outlierguring preliminary

screening, you should not run into problems with multivariate normality. Still, we need to check
both level 1 and level 2 residuals for normalitye t 6 s e s t i otairi residwals,@w@d e |
inspect them

The model specified for the fixed effects was:

Level -1 Level -2
Coefficients Predictors

INTRCPT1, BO INTRCPTZ, GOO

SECTOR, G01
$ MEANSES, G02
FEMALE slope, B1  INTRCPT2, G10
SECTOR, G11
$ MEANSES, G12
*  SESslope, B2 INTRCPT2 , G20
SECTOR, G21
$ MEANSES, G22
*' - This level - 1 predictor has been centered around its group mean.
'$" - Thislevel -2 predictor has been centered around its grand mean.
Level -1 Model

Y = B0 + B1*(FEMALE) + B2*(SES) + R

Level -2 Model
BO = G0O + GO1*(SECTOR) + GO2*(MEANSES) + U0
Bl = G10 + G11*(SECTOR) + G12*(MEANSES) + U1l
B2 = G20 + G21*(SECTOR) + G22*(MEANSES) + U2

The outcome variable is MATHACH

Final estimation of fixed effects
(with robust standard errors)

Standard Approx.
Fixed Effect Coefficient Error T -ratio df. P - value
For INTRCPT1, BO
INTRCPT2, GO0 12.728314 0.213807 59.532 157 0.000
SECTOR, G01 1.182789 0.393223 3.008 157 0.004
MEANSES, G02 5.206435 0.431487 12.066 157 0.000
For FEMALE slope, B1
INTRCPT2, G10 -1.230407 0.221181 - 5.563 157 0.000
SECTOR, G11 0.075948 0.414157 0.183 157 0.855
MEANSES, G12 -0.012379 0.419525 -0.030 157 0.977

For  SES slope, B2
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INTRCPT2, G20 2.884798 0.145874 19.776 157 0.000
SECTOR, G21 -1.605447 0.234757 - 6.839 157 0.000
MEANSES, G22 1.043186 0.328828 3.172 157 0.002

Final estimation of variance components:

Random Effect Standard  Variance df Chi -square P -value
Deviation Component

INTRCPT1, uo 1.722 98 2.96867 120 303.16423 0.000
FEMALE slope, Ul 1.00971 1.01951 120 149.42515 0.035

SES slope, U2 0.35080 0.12306 120 122.48752 0.420
level -1, R 6.02785  36.33494

To check the distribution of level 1 error term, we should obtain a-lexesgiduals file by

clicking on Basic Settingd Level 1 residuals file, and then selecting the variabkesvant in

that file and the type of output file we wigmake sure the file extension corresponds to the type
of file you selected HLM does not automatically adjust that) would advise to include all
potentially interesting variables in that file, yatu can also merge them later if you have

personl e v e | I D (i n oSimilarlg weslEajn levelR residuat astwell.

We can now use the statistical software of our choice (e.g., Stata or SPSS) to check for normality
of levell residuals. W can examine the distribution graphically as well as use formal statistical
tests for normality.

. sktest L1IRESID
Skewness/Kurtosis tests for Normality

Variabl e | Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

L1IRESID| 0.000 0.000 . 0.0000

. histogram L1RESID, normal
(bin=38, start= -19.084782, w idth=.96868813)

©
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o
-2.00e+01 -1.00e+01 0.0000000 1.00e+01 2.00e+01
L1IRESID

. kdensity L1RESID, normal
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Kernel density estimate
Normal density

.gnorm L1RESID

T T T T T
-2.00e+01 -1.00e+01 0.0000000 1.00e+01 2.00e+01
Inverse Normal

We conclude that they look normal enouljlote that level 1 residuals file also contains
predicted values FITVAL O and predicted values of SIGMA (that is only relevant when we
allow sigma ¢ vary, as we did when we tried to model heterogeneity of variance above).

Next,le t téssthe multivariate normality of level 2 residudlke level2 residual filecontains a
single record pegroupunit. The first variable in this file contains tbeit ID, followed by the
number of levell units within that leveR unit (denoted byJ), and various summary statistics
(CHIPCT throughMDRSVAR).

MDIST is theMahalanobs distance measu(ee., the standardized squared distance of a unit
from the cergr of a multidimensional distributiofdr each level 2 groughat measures the
distance between residual estimates for each group relative to the expected distance based on the
model (MDIST variable).CHIPCT containsthe expecte values for that distanceAfter MDIST,
there ard@hree estimates ofié levell variability.

1 The natural logarithm of the total standard deviatuahin each unitLNTOTVAR.

1 The natural logarithm of the residual standard deviatibimin each unit based on its
least squaresgressionpLSRSVAR.Note thatthis estimate exists only for those units
which have sufficient data to compute letebLs estimates.

1 TheMSRSVAR, the natural logarithrof the residual standard deviatifsom the final
fitted fixed effects model.
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The mos useful thing for us, however, is residuals themselves. Here, vi@ g&rdinary Least
Squaresjesiduals residuals based on separately fittingggular OLS rodel for each group, as

well as EBresidualdempirical Bayes residuals) that are based coated shrinkage estimates

of individual s ch o these ére basedyan bothgyreapgenific eegressiani o n s
coefficients and the overall coefficients for the entire mdsielce thesestimates are a

weighted average of those componetiis regression coefficients for each group are essentially
shrunk towards the overall coefficient for the whole sample. (See3il #9Hox book for a

good explanation of EB estimators.)

When we graphed level one slopes for each group using HLM grapimcigpius, we were

relying on such shrinkage estimates for each gr@gif we are interested in assessing what a
predicted slope would be for a given group, we could take the overall coefficient and add the
corresponding EB residual for that group. Ndtattwe get one OLS residual variable and one

EB residual variable for each intercept or slope that we are modeling as random; here we have
three random effects and three residuals variables.

We also get thétted or predicted values (FV) of the kvl coefficientsbased on stimated
level2 models, and thEC coefficients, which are the sum of the fitted values pluE®e
residuals. The posterior variances and covariaott®e estimates of the intercept and 85
slopes are given nexP{00to PVC10). Finally, the level2 predictors used in the analysis plus
those additional leve? predictors that we requested for inclusion in the file are included.

We will most heavily utilize EB residualgzirst,we can examine the normality of each set of
resduals separately
. We can examine normality for each of these:

. histogram EBINTRCPT1, normal
(bin=12, start= - 4.0914528, width=.6652911)

. histogram EBFEMALE, normal
(bin=12, start= - 1.3546074, width=.2191729)

. histogram EBSES, normal
(bin=12,  start= -.44807637, width=.07564943)

[

-4.00e+00 -2.00e+00 0.0000000 2.0000000 4.0000000
EBINTRCPT1
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Second, we caassess multivariate normality by examining Mahalamdistance measure
(MDIST variable). Note that the units in the residual dite sorted in ascending orderNpIST.
Analogous to univariate mmal probability plotting, we can construcQa plot of MDIST vs.
CHIPCT. CHIPCT containghe expecte values if the Q-Q plot resembles a 45 degree line, we
have evidence that the random effects are distributed multivariate normal. In addition{ the plo
will help us detect outlying units (units with larg®IST values well above the 45 degree line).

. scatter MDIST CHIPCT CHIPCT, s(. i) c(. I)

wn
=1

Here, we seem to have some model fit probileaii distance values are below the expected

values, with ae being above and much higher than others. We know that there is at least one a
problem with the modél SES slopevariance is not statistically significant, but we included it

If we fix that problem, the graph actually looks better:
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If we want to emmine which school has the highest MDIST:
. scatter MDIST CHIPCT CHIPCT, mlabel(L2ID) c(. I)

©38367
S
i ’g ﬁ)?533.5192
G5
o e
0 5 10 15
CHIPCT
® MDIST ——¢-- CHIPCT
| |
5. Linearity
Before you get your data into HLM, itds al so

independent variable to the dependent to assdgseitsity. A good tool for such an examination
is a lowess plot (called LOESS in SP$3hat is,a scatterplot with locally weighted regression
line (based on means or medians) going through it:

. lowess mathach sesl

Lowess smoother
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We can change bandwidth to make turve less smooth (decrease the number) or smoother

(increase the number):
.lowess  mathach sesl , bwidth(.1)

Lowess smoother
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We can also add a regression line to see the difference better:
. scatter mathach sesl , mcolor(yellow) || lowess mathach ses1l , Icolor(red) ||
Ifit mathach sesl , Icolor(blue)

You can do an approximate test for multivariate linearity (based on OLS); in Stata, we could

install a usemritten mrunning program:
. search mrunning
Keyword search
Keywords: mrunning
Search: (1) Off icial help files, FAQs, Examples, SJs, and STBs
Search of official help files, FAQs, Examples, SJs, and STBs
SJ-5-3 gr0017 ............. A multivariable scatterplot smoother
(help mrunning, running if installed) . . . . P. Royston and N. J. Cox
Q3/05 SJ 5(3):405 - 412
presents an extension to running for use in a
multivariable context

Click on gr0017 to install the program. Now we can use it:
. mrunning mathach ses female sector meanses size
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