



## **Frequency Distribution**

- First step in describing a variable
- E.g.: Variable "child's age" is measured for 10 children: 3, 1, 2, 3, 6, 7, 6, 2, 8, 2
- Unique values are 1, 2, 3, 6, 7, 8 years old
- 1 − 1 case (10%)
  - 2 3 cases (30%)
  - 3 2 cases (20%)
  - 6 2 cases (20%)
  - 7 1 case (10%)
  - 8 1 case (10%)



#### **Cumulative Distribution**

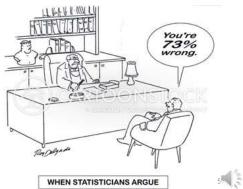
- Only makes sense for ordinal and interval/ratio
- 1 1 case (10%) [10%]
  - 2 3 cases (30%) [40%]
  - 3 2 cases (20%) [60%]
  - 6 2 cases (20%) [80%]
  - 7 1 case (10%) [90%]
  - 8 1 case (10%) [100%]



## **Descriptive Statistics**

- · Distributions can be long and complicated
- To describe distributions concisely and to compare distributions, we use descriptive

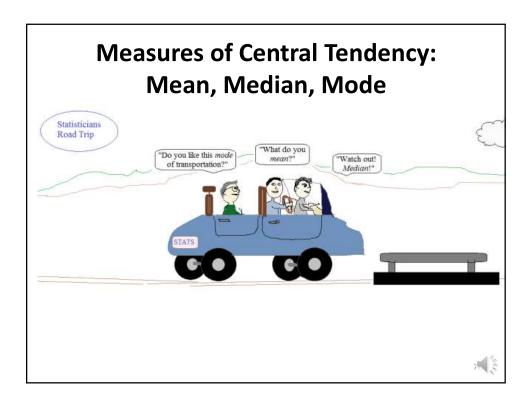
statistics




"Here's a list of 100,000 warehouses full of data. I'd like you to condense them down to one meaningful warehouse."



## **Percentage**


- A percentage for each value = a statistic
- Percentages are very important statistics for nominal variables

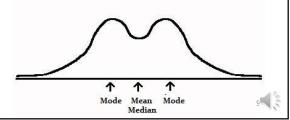


## **Two Key Characteristics of a Variable**

- <u>1. Central tendency (or average)</u> -- describes the typical value in the list
- 2. Variability -- describes spread, variation, the typical distance of numbers from the average

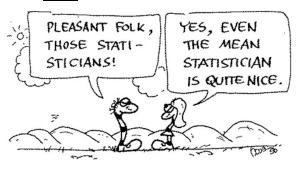





#### **Mode: Example**

- Frequency distribution for child's age variable:
- 1 − 1 case (10%)
  - 2-3 cases (30%)  $\leftarrow$  mode
  - 3 2 cases (20%)
  - 6 2 cases (20%)
  - 7 1 case (10%)
  - 8 1 case (10%)




#### Mode: When to Use

- Mode can be used with any level of measurement
- But it's not as helpful for interval/ratio, especially if more than 10-15 discrete values
- Mode for interval/ratio variables: can be useful if bimodal distribution

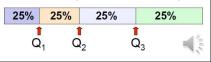


#### Mean

- <u>Mean</u> of list = sum of all numbers / how many numbers:  $\bar{X} = \frac{\sum X}{n}$
- Mean can only be used with <u>interval/ratio</u> variables, <u>not</u> with nominal or ordinal



10


## **Example Using Frequency Distribution**

- We multiply each value by its frequency:
  - -1-1 case:  $1 \times 1 = 1$
  - -2-3 cases:  $2 \times 3 = 6$
  - -3-2 cases:  $3 \times 2 = 6$
  - -6-2 cases:  $6 \times 2 = 12$
  - -7 1 cases:  $7 \times 1 = 7$
  - -8-1 case:  $8 \times 1 = 8$
- Add all these products and divide by total number of cases: Mean of X = (1 + 6 + 6 + 12 + 7 + 8)/10=4



#### Median

- Splits the sorted list of values in half; the second quartile  $(Q_2)$ , the  $50^{th}$  percentile
- List of children's ages, sorted:
  - 1, 2, 2, 2, 3 | 3, 6, 6, 7, 8. Median=3
- Odd number of cases:
  - 1 3 4 4 <u>5</u> 6 7 7 7. Median=5
- Different numbers in the middle:
  - 3 4 4 5 6 | 7 8 8 9 10. Median=6.5 (some use 6)



#### **Based on Cumulative Distribution**

• Median is the point where we reach or exceed 50% -- here, it's 3, we exceed 50%.

```
1 – 1 case (10%) [10%]
```

2 – 3 cases (30%) [40%]

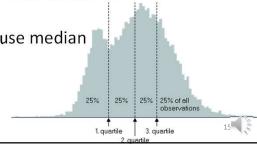
3 – 2 cases (20%) [60%]

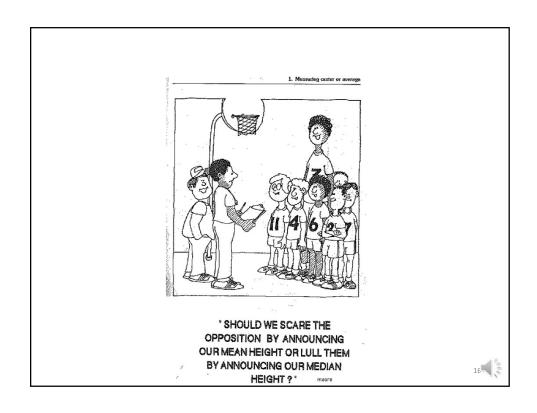
6 – 2 cases (20%) [80%]

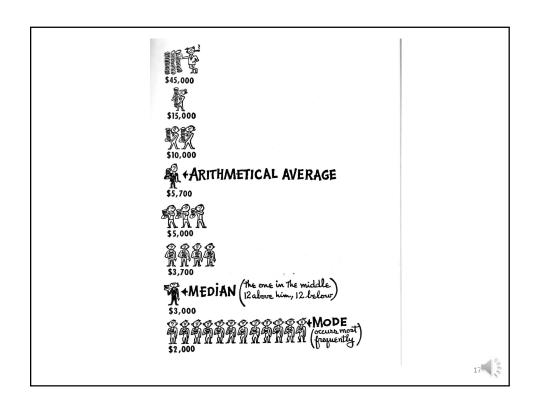
7 – 1 case (10%) [90%]

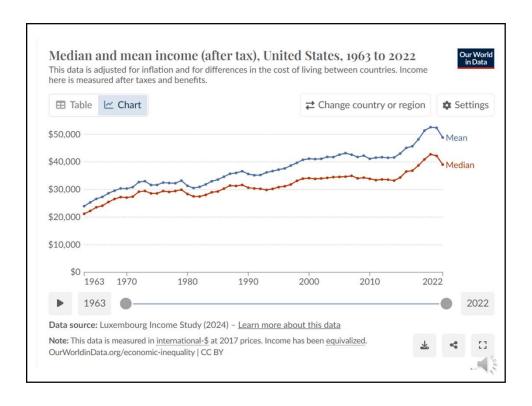
8 – 1 case (10%) [100%]




# **Cumulative Distribution and Median: Another Example**


- 3 1 case (10%) [10%]
- 4 2 cases (20%) [30%]
- 5 1 case (10%) [40%]
- 6 1 case (10%) [50%]
- 7 1 case (10%) [60%]
- 8 2 cases (20%) [80%]
- 9 1 case (10%) [90%]
- 10 1 case (10%) [100%]
- Median=6 (we reached 50%)
- Compare to sorted list result: 6.5





## Median

- Median can be used with ordinal or interval/ratio, not with nominal
- Mean vs median choice for <u>interval/ratio</u> variables:
  - Mean is very sensitive to extreme values, median isn't
  - Example: Find the mean and median of 1, 2, 3, 4, 90
  - So if you have outliers, use median









## **Summary**

- Nominal → mode only, NEVER mean or median
- Ordinal → median or mode; mean is sometimes used but that's not technically correct
- Interval/ratio → mean (if no outliers) or median (if outliers or skew); mode can be used but often not as useful, especially if there are many values



# Why Do We Need to Measure Variability?

- Consider three sets of values
  - List 1: 1, 5, 9
  - List 2: 4, 5, 6
  - List 3: 5, 5, 5
- Mean=5 but very different



#### **Variation Ratio**

- Rarely used, only for nominal variables
- Percentage of cases NOT in modal category





## Range and Interquartile Range

- Describes the spread of the distribution
- Used for ordinal or interval/ratio data
- To find Q1 and Q3, use the same approaches as for median (sorted list or cumulative distribution)

#### **Standard Deviation**

- Describes the typical distance of numbers from the mean
- Not applicable to nominal level variables!
- Deviation vs Standard Deviation:
  - Deviation distance between one number and the mean
  - Standard deviation typical (average) distance

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$



#### **Variance**

- Variance = squared standard deviation
- Measured in squared units → the number is not as meaningful as standard deviation
- But useful for further statistical analyses

$$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$



# **Example Using Frequency Distribution**

• List: 3, 1, 2, 3, 6, 7, 6, 2, 8, 2. Mean=4.

| X | Cases | $X-\overline{X}$ | $(X-\overline{X})^2$ | $(X-\overline{X})^2*$ Cases |
|---|-------|------------------|----------------------|-----------------------------|
| 1 | 1     | 1-4=-3           | 9                    | 9 * 1 = 9                   |
| 2 | 3     | 2 – 4 = -2       | 4                    | 4 * 3 = 12                  |
| 3 | 2     | 3 – 4 = -1       | 1                    | 1 * 2 = 2                   |
| 6 | 2     | 6 – 4 = 2        | 4                    | 4 * 2 = 8                   |
| 7 | 1     | 7 – 4 = 3        | 9                    | 9 * 1 = 9                   |
| 8 | 1     | 8 – 4 = 4        | 16                   | 16 * 1 = 16                 |
| Σ |       |                  |                      | 56                          |

- Step 3: 56/(10-1)=6.22 ← variance
- Step 4: sqrt(6.22) = 2.49 ← standard deviation



| <b>Descriptive Statistics</b> |         |                |                        |  |  |  |  |
|-------------------------------|---------|----------------|------------------------|--|--|--|--|
| by Level of Measurement       |         |                |                        |  |  |  |  |
| X                             | Nominal | Ordinal        | Interval/Ratio         |  |  |  |  |
| Percentage                    | Yes     | Yes            | Yes (often not useful) |  |  |  |  |
| Mean                          | No      | No (sometimes) | Yes                    |  |  |  |  |
| Median                        | No      | Yes            | Yes                    |  |  |  |  |
| Mode                          | Yes     | Yes            | Yes (often not useful) |  |  |  |  |
| Variation ratio               | Yes     | Yes            | Yes (but not useful)   |  |  |  |  |
| Range                         | No      | Yes            | Yes                    |  |  |  |  |
| Interquartile                 | No      | Yes            | Yes                    |  |  |  |  |
| range                         |         |                |                        |  |  |  |  |
| Standard                      | No      | No (sometimes) | Yes                    |  |  |  |  |
| deviation                     |         |                |                        |  |  |  |  |
| Variance                      | No      | No (sometimes) | Yes 26                 |  |  |  |  |
|                               |         |                | 3/2                    |  |  |  |  |