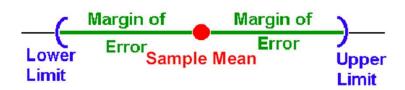
Confidence Intervals

Confidence Intervals

- One sample mean → one point estimate: unlikely to be exactly correct
- To be correct with more certainty \rightarrow use

interval estimates

Anatomy of a Confidence Interval

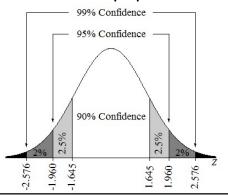


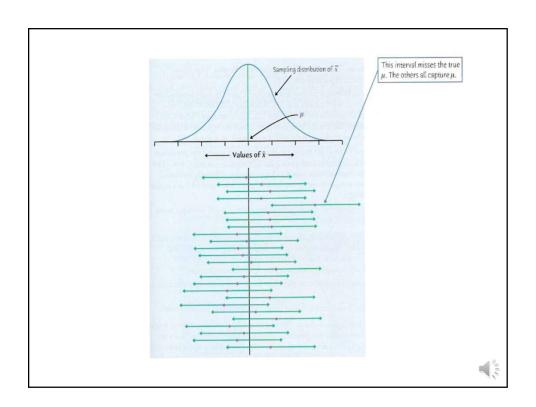
Level of Confidence

- Confidence interval → associated with a certain level of confidence
- 95% confidence interval: We are 95% sure that mean is in that interval, but there is a 5% chance that we are making an error
- We use alpha (α) to refer to this probability of error
- To be 100% sure, we would need an infinitely large confidence interval -- in theory, all estimates are possible, but some are extremely unlikely

Using CLT for Confidence Intervals

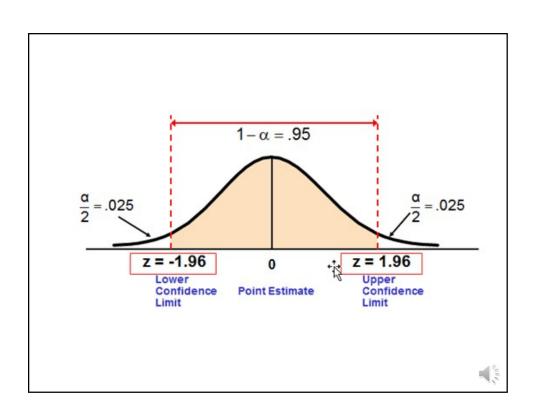
- Based on CLT, sampling distribution is normal
- For 95% of all samples, a sample mean will be within 2 SE from the population mean

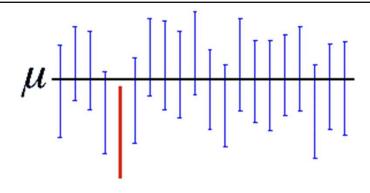




Typical Confidence Levels

- 95% confidence interval: z-score=+/-1.96 (within +/- 2 SE from the mean)
- 99% confidence interval: z-score=+/-2.576
- 90% confidence interval: z-score=+/-1.645





A 95% confidence interval indicates that 19 out of 20 samples (95%) from the same population will produce confidence intervals that contain the population parameter.

https://seeing-theory.brown.edu/frequentist-inference/index.html

https://rpsychologist.com/d3/CI/

Confidence Intervals for Means of Large Samples (n≥30)

- 1. Pick the desired level of confidence (e.g., 90%, 95%, 99%)
- 2. Divide the confidence level by 2, use that number as area value to enter Table B1 \rightarrow find the corresponding z score
- 3. Calculate the two confidence interval limits, X_1 and X_2 : $\overline{X} \pm z^* \sigma_{\overline{X}}$, where $\sigma_{\overline{X}} = \sqrt[s]{n}$
- 4. Set the interval: Probability($X_1 \le \mu \le X_2$)=.95 (or .99, or .90, depending on the selected confidence level)

Example

Problem: Assume you want to have a 95% confidence interval for the mean. You take a random sample of n = 49, and get a sample mean \overline{X} = 110 and standard deviation s = 14

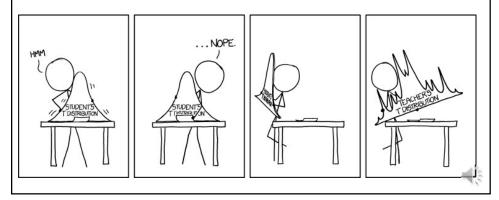
- 1. Set level of confidence at CL = 95%
- 2. We want the middle 95% of the area under the curve. Half of it will be in the positive half of the curve \rightarrow 95/2 = 47.50. Enter Table B1 with 47.50 \rightarrow z=1.96
- 3. Calculate the two confidence interval limits: $\overline{X} \pm z\sigma_{\overline{X}} = 110 \pm 1.96* (14/\sqrt{49}) = 110 \pm 3.92 \rightarrow X_1=106.08$ and $X_2=113.92$.
- 4. Answer: Probability(106.08 $\leq \mu \leq$ 113.92) = .95

In Words

- Probability(106.08 $\leq \mu \leq$ 113.92) = .95
- Based on our sample data, we are 95% confident that the "true" mean of this variable (i.e., population mean) is between 106.08 and 113.92.
- Alternatively: There is a 95% chance that the population mean is between 106.08 and 113.92.

Confidence Intervals: Small vs. Large Samples

- For large samples: based on normal curve
- For small samples (n < 30) based on Student's t-distribution



Student's t Distribution

• DF = degrees of freedom = n-1

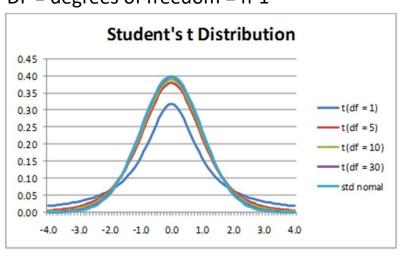


Table B2 (in Salkind)

- For confidence interval: only use the two-tailed test part
- Degrees of freedom, df = n 1
- Use probability of error (alpha) rather than confidence level itself
- To get alpha: use the confidence level as proportion rather than percentage (e.g., .95 rather than 95) and subtract it from 1 (1 - .95 = .05)
- Use the column for this alpha and the row with appropriate df → t-value

Confidence Intervals for Means of Small Samples (n<30)

- 1. Pick the desired level of confidence (e.g., 90%, 95%, 99%)
- 2. Using the two-tailed test part of Table B2, find the t-value for the alpha level corresponding to your confidence level (1-CL/100) and your degrees of freedom (df=n-1)
- 3. Calculate the two confidence interval limits, X_1 and X_2 : $\overline{X} \pm t^* \sigma_{\overline{X}}$, where $\sigma_{\overline{X}} = \sqrt[s]{n}$
- 4. Set the interval: Probability($X_1 \le \mu \le X_2$)=.95 (or .99, or .90, depending on the selected confidence level)

Example

Problem: Assume you want to get a 95% confidence interval for the mean. You take a random sample of n=25 and get a sample standard deviation of s=10 and a sample mean of \overline{X} =70.

- 1. Set CL at .95.
- 2. Obtain t. In Table B2, we look at the column in the two-tailed part of the table that corresponds to .05, since 1-.95=.05. We read down the column marked as .05 to the row with the degrees of freedom equal to 25-1 = 24. The entry is t=2.064.
- 3. Calculate the two confidence interval limits: $\overline{X} \pm t^{*s}/\sqrt{n} = 70 \pm 2.064*(10/\sqrt{25}) = 70 \pm 4.128 \rightarrow X1=65.872$ and X2=74.128.
- 4. Answer: Probability (65.872 $\leq \mu \leq$ 74.128) = .95

Confidence Intervals in Stata

mean age

Mean estimation	Numbe	r of obs	= 1969
	Std. Err.	-	Interval]
·	.3985971	47.41178	48.97522

Answer: Probability (47.41178 $\leq \mu \leq$ 48.97522) = .95 Based on our sample data, we are 95% confident that the "true" mean of age among Americans is between 47.41 and 48.98 years old.

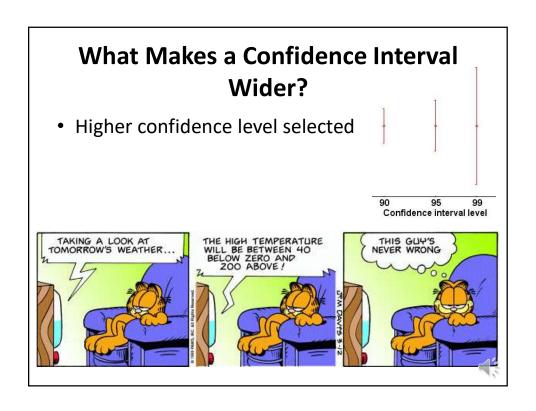
Changing Confidence Level

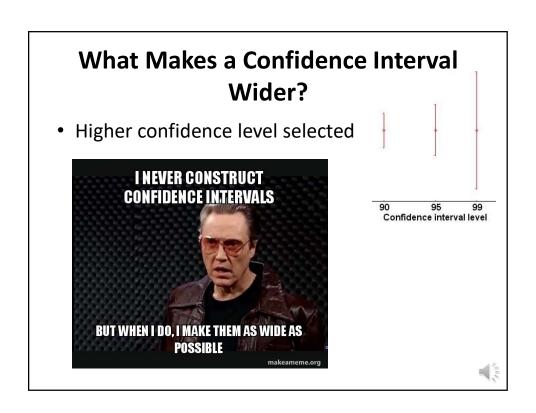
mean age, level(99)

Mean estimation		Numl	ber of obs	= 1969
	Mean	Std. Err.	[99% Conf.	Interval]
age	48.1935	.3985971	47.16578	49.22121

Answer: Probability (47.16578 $\leq \mu \leq$ 49.22121) = .99 Based on our sample data, we are 99% confident that the "true" mean of age among Americans is between 47.17 and 49.22 years old.

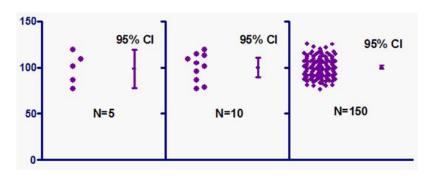
What Makes a Confidence Interval Wider? • Higher confidence level selected 90 95 99 Confidence interval level

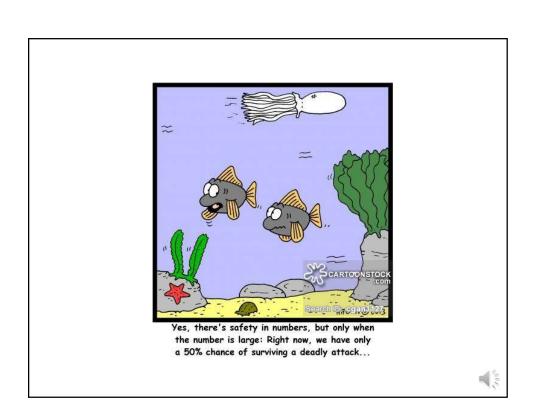




What Makes a Confidence Interval Wider?

- Higher confidence level selected
- Smaller sample size





What Makes a Confidence Interval Wider?

- · Higher confidence level selected
- Smaller sample size
- Less homogenous population

Homogenous population:

Heterogenous (diverse) population:

What Makes a Confidence Interval Wider?

- Higher confidence level selected (larger z)
- Smaller sample size (larger n)
- Less homogenous population (larger s)

$$CI = ar{x} \pm z rac{s}{\sqrt{n}}$$

CI = confidence interval

 $ar{x}$ = sample mean

z = confidence level value

s = sample standard deviation

n = sample size

