SOCY7708: Hierarchical Linear Modeling Instructor: Natasha Sarkisian Class notes: HLM Model Building Strategies

The issue of centering

An important decision that we make when conducting HLM analysis is whether and how you'd like to center your predictors. Here, we will discuss the issues involved in making these decisions.

Level-1 predictors:

1. Natural metric (X):

You should only use the original metric if the value of 0 for a predictor is a meaningful value (i.e., actually exists in the data). When 0 is not meaningful, the estimate of the intercept will be arbitrary and may be estimated with poor precision. Lack of precision in HLM can be very problematic. First, because you are estimating within-group intercepts, thus with possibly small N, the estimates may be quite unstable. Second, because you may be trying to model variation in these intercepts, your model will be affected by the unreliability of the estimates.

2. Grand-mean centering (X - grand mean):

This will address the problems with estimation of intercept in original metric. Because the 0 values will fall in the middle of the distribution of the predictors, the intercepts will be estimated with much more precision. The intercept is also interpretable. Specifically, if all predictors are grand mean centered, it will represent the value for a person in an average level 2 group with a (grand) average on every predictor. The interpretation of the intercepts is now "adjusted group mean." The interpretation of slopes does not change. E.g., our measure of SES is already grand-mean centered because it is a standardized scale. So we can interpret the fixed effect for the intercept as the average math achievement adjusted for SES – i.e., the average math achievement for someone with average SES.

LEVEL 1 MODEL

$$MATHACH_{ij} = \beta_{0j} + \beta_{1j}(FEMALE_{ij}) + \beta_{2j}(SES_{ij} - \overline{SES}_{..}) + r_{ij}$$

LEVEL 2 MODEL

 $\begin{aligned} \beta_{0j} &= \gamma_{00} + \gamma_{01}(\text{SECTOR}_j) + u_{0j} \\ \beta_{1j} &= \gamma_{10} + \gamma_{11}(\text{SECTOR}_j) + u_{1j} \\ \beta_{2j} &= \gamma_{20} + \gamma_{21}(\text{SECTOR}_j) \end{aligned}$

. sum ses

Variable	Obs	Mean	Std. dev.	Min	Max
ses	7,185	.0001434	.7793552	-3.758	2.692

. gen ses_m=ses-r(mean)

. sum ses_m

Variable	Obs	Mean	Std. de	·V.	Min	Ν	lax
ses_m	7,185 -	7.90e-09	.779355	2 -3.75	8143	2.6918	357
. mixed mathach	c.ses_m##i.se	ctor i.femal	e##i.se	ctor	id: f	emale,	cov(unstr)
Performing EM or	ptimization						
Mixed-effects MI Group variable:	id			Number o Number o Obs per	f obs f grou group:	= min = avg = max =	7,185 160 14 44.9 67
Log likelihood =	= -23254.764			Wald chi Prob > c	2(5) hi2	=	680.89 0.0000
mathach	Coefficient	Std. err.	Z	P> z	[9	5% conf	f. interval]
ses_m 1.sector	2.922083 2.085121	.1399094 .4060651	20.89 5.13	0.000 0.000	2. 1.	647865 289248	3.1963 2.880994
sector#c.ses_m 1	 -1.292315	.2107619	-6.13	0.000	-1.	705401	8792293
1.female	-1.222337	.2312292	-5.29	0.000	-1.	675538	769136
female#sector 1 1	.0298036	.389324	0.08	0.939	7	332574	.7928646
_cons	12.43798	.2611924	47.62	0.000	11	.92605	12.94991
Random-effects	s parameters	 Estimate	Std.	err.	 [95%	conf.	interval]
id: Unstructured	d var(female) var(_cons) female,_cons)	 1.050623 4.115261 -1.14854	.597 .709 .54	3015 7072 4171	.344 2.93 -2.21	7634 4955 5095	3.201644 5.770234 0819842
7	var(Residual)	+ 36.44462	.620	1845	35.2	4913	37.68066
LR test vs. line	ear model: chi	2(3) = 307.6	9		Prob	> chi2	2 = 0.0000
Note: LR test is	s conservative	and provide	d only	for refe	rence.		
. estat recov, o	corr						
Random-effects of	correlation ma	trix for lev	el id				

Note that while it may seem inappropriate at first to center a dummy variable, in HLM it actually can be useful. If uncentered, the intercept in a model with a dummy variable is the average value when the dummy variable is 0. If the dummy variable is centered, the intercept then becomes the mean adjusted for the <u>proportion</u> of cases with the dummy variable=1. For example, if the indicator for gender variable is centered around the grand mean, this centered predictor can take two values. If the subject is female, it will equal the proportion of female students in the sample. If the subject is male, it will equal to minus the proportion of female students in the sample. Zero

on this variable becomes the average proportion of female students. The intercept again will be the adjusted group mean - in this case, it is adjusted for the difference among level-2 units in the percentage of female students.

LEVEL 1 MODEL

 $\begin{array}{rl} \mathsf{MATHACH}_{ij} = & \beta_{0j} + \beta_{1j}(\mathsf{FEMALE}_{ij} - \overline{\mathsf{FEMALE}}_{..}) + \\ & \beta_{2i}(\mathsf{SES}_{ij} - \overline{\mathsf{SES}}_{..}) + r_{ij} \end{array}$

LEVEL 2 MODEL

$$\begin{split} \beta_{0j} &= \gamma_{00} + \gamma_{01}(\mathsf{SECTOR}_j) + u_{0j} \\ \beta_{1j} &= \gamma_{10} + \gamma_{11}(\mathsf{SECTOR}_j) + u_{1j} \\ \beta_{2j} &= \gamma_{20} + \gamma_{21}(\mathsf{SECTOR}_j) \end{split}$$

. sum female

Variable	Obs	Mean	Std. dev.	. Min	Max
+					
female	7,185	.5281837	.4992398	0	1

. gen female_m=female-r(mean)

. sum female ${\tt m}$

Variable	Obs	Mean	Std. dev	. Min	Max
female m	7,185	1.68e-09	.4992398	5281837	.4718163

. mixed mathach c.ses_m##i.sector i.female_m##i.sector || id: female_m, cov(unstr)
female_m: factor variables may not contain noninteger values
r(452);

. mixed mathach c.ses_m##i.sector c.female_m##i.sector || id: female_m, cov(unstr)

Performing EM optimization ...

Mixed-effects ML regression			Numb	er of obs	s =	7,185
Group variable: id	Group variable: id			er of gro	oups =	160
			Obs	per group	p :	
					min =	14
					avg =	44.9
					max =	67
			Wald	chi2(5)	=	680.89
Log likelihood = -2	23254.764		Prob	> chi2	=	0.0000
mathach	Coefficient	Std. err.	z	₽> z	[95% co	onf. interval]
ses_m	2.922084	.1399094	20.89	0.000	2.6478	57 3.196302
1.sector	2.100861	.3246478	6.47	0.000	1.46450	63 2.737159
sector#c.ses m						
1	-1.292317	.2107619	-6.13	0.000	-1.7054	038792314
female_m	-1.222338	.2312331	-5.29	0.000	-1.6755	477691294
<pre>sector#c.female m </pre>						
1	.0297957	.3893304	0.08	0.939	73327	79.7928692
_cons	11.79236	.2158534	54.63	0.000	11.369	93 12.21543

Random-effects parameters	Estimate	Std. err.	[95% conf.	interval]
id: Unstructured var(female_m) var(_cons) cov(female_m,_cons)	 1.050782 3.195066 5936354	.5972948 .4878502 .3779508	.3448775 2.368706 -1.334405	3.201549 4.309716 .1471347
var(Residual)	36.4446	.6201836	35.24911	37.68063
LR test vs. linear model: chi2	2(3) = 307.69		Prob > chi2	2 = 0.0000
Note: LR test is conservative	and provided	only for ref	erence.	
. estat recov, corr				
Random-effects correlation mat	trix for leve	l id		
female_m	_cons			

3. Group-mean centering (X – group mean):

Predictors can also be centered around the mean value for the group to which they belong. The intercept can then be interpreted as the average outcome for each group. This allows interpretation of parameter estimates as person-level effects within each group (i.e. if you differ from your group's average by one unit, your math achievement will increase by X units).

Again, we can group-mean center dummy variables as well. For females, we will get a value equal to the proportion of male students in school j; for males, it will take the value equal to minus the proportion of females in that school. The fact that it is a dummy variable does not change the interpretation of the intercept when group mean-centering is employed.

Use egen command to generate an aggregated variable containing group means, then subtract group means from the original variable:

- . bysort id: egen meanses2=mean(ses)
- . gen ses gm=ses-meanses2
- . bysort id: egen meanfemale=mean(female)
- . gen female gm=female-meanfemale

LEVEL 1 MODEL

 $\begin{array}{rl} \mathsf{MATHACH}_{ij} &=& \beta_{0j} + \beta_{1j}(\mathsf{FEMALE}_{ij} - \overline{\mathsf{FEMALE}}_{.j}) + \\ & & \beta_{2j}(\mathsf{SES}_{ij} - \overline{\mathsf{SES}}_{.j}) + r_{ij} \end{array}$

LEVEL 2 MODEL

 $\begin{aligned} \beta_{0j} &= \gamma_{00} + \gamma_{01}(\text{SECTOR}_j) + u_{0j} \\ \beta_{1j} &= \gamma_{10} + \gamma_{11}(\text{SECTOR}_j) + u_{1j} \\ \beta_{2j} &= \gamma_{20} + \gamma_{21}(\text{SECTOR}_j) \end{aligned}$

. mixed mathach c.se	es_gm##i.secto	or c.female	_gm##i.sec	tor	id: female_c	gm, cov(unstr)	
Mixed-effects ML regression Group variable: id			Numbe Numbe Obs p	er of obs er of gro per group	= ups = :	7,185 160	
			Wald	chi2(5)	min = avg = max =	14 44.9 67 529 31	
Log likelihood = -23	3299.553		Prob	> chi2	= (0.0000	
mathach	Coefficient	Std. err.	Z	P> z	[95% conf	. interval]	
ses_gm 1.sector	2.732804 2.804132	.1444167 .4367607	18.92 6.42	0.000 0.000	2.449752 1.948097	3.015855 3.660168	
sector#c.ses_gm 1	 -1.310776 	.2178402	-6.02	0.000	-1.737735	8838173	
female_gm	-1.224759	.2253235	-5.44	0.000	-1.666385	7831325	
sector#c.female_gm 1	.4206202	.4105511	1.02	0.306	3840451	1.225286	
cons	11.39348 	.2911603	39.13	0.000	10.82282	11.96415	
Random-effects par	rameters	Estimate	Std. err.	[95	% conf. inte	erval]	
id: Unstructured var(fe va cov(female_c	======================================	.7984596 6.660512 6228692	.5522106 .8506139 .5725962	.20 5. -1.7	58573 3.0 18562 8.5 45137 .49	096989 554892 993987	
var(1	Residual)	36.44168	.6202232	35.	24611 37	7.6778	
LR test vs. linear r	model: chi2(3)) = 786.22		Pro	b > chi2 = (0.0000	
Note: LR test is con	nservative and	d provided	only for r	eference			
. estat recov, corr							
Random-effects corre	elation matriz	x for level	id				
femai	le_gm _co	ons					
female_gm _cons 2	1 70095	1					

Important:

Under grand-mean centering or no centering, the parameter estimates reflect a combination of (1) person-level effects and (2) compositional effects. But when we use a group-centered predictor, we only estimate the person-level effects.

In order not to discard the compositional effects with group-mean centering, level-2 variables should be created to represent the group mean values for each group-mean centered predictor. Because the group mean is effectively removed from the individual scores, the level-2 values will be orthogonal to the level-1 values. E.g. we can use group mean centering for SES and using mean SES as a school level variable (here, meanses is already in the dataset, but we also created meanses2):

LEVEL 1 MODEL

 $MATHACH_{ij} = \beta_{0j} + \beta_{1j}(SES_{ij} - \overline{SES}_{..}) + r_{ij}$

LEVEL 2 MODEL

 $\beta_{0j} = \gamma_{00} + \gamma_{01} (\text{SECTOR}_j) + \gamma_{02} (\text{MEANSES}_j) + u_{0j}$ $\beta_{1j} = \gamma_{10} + \gamma_{11} (\text{SECTOR}_j) + \gamma_{12} (\text{MEANSES}_j) + u_{1j}$

. mixed mathach c.ses_gm##i.sector c.ses_gm##c.meanses || id: ses_gm, cov(unstr)
note: ses_gm omitted because of collinearity.

Mixed-effects ML red Group variable: id	Numbe Numbe Obs p	r of obs r of gro er group	= ups = : min = avg =	7,185 160 14 44.9		
			Wald	chi2(5)	max = = '	67 761.63
Log likelihood = -23248.215			Prob	> chi2	= (0.000
mathach	Coefficient	Std. err.	Z	P> z	[95% coni	f. interval]
ses_gm	2.93939	.1534841	19.15	0.000	2.638567	3.240214
1.sector	1.226736	.3032663	4.05	0.000	.6323451	1.821127
sector#c.ses_gm 1	 -1.643914	.2373424	-6.93	0.000	-2.109097	-1.178732
ses_gm	I 0	(omitted)				
meanses	5.331706	.3655557	14.59	0.000	4.61523	6.048182
c.ses_gm#c.meanses	1.042444	.2960172	3.52	0.000	.4622613	1.622627
_cons	12.09601	.1968495	61.45	0.000	11.71019	12.48183
Random-effects pa:	rameters +	Estimate	Std. err.	[95	% conf. inte	erval]
id: Unstructured	1					
va	r(ses_gm)	.0650065	.208139	.00	01223 34	14277
cov(ses_	gm,_cons)	.1881343	.1983402	20	06054 .5	768741
var(1	Residual)	36.72119	.6261882	35.	51417 37	.96924
LR test vs. linear n	 model: chi2(3) = 216.68		Pro	b > chi2 = (.0000

Note: LR test is conservative and provided only for reference.

. estat recov, corr

Random-effects correlation matrix for level id

	ses_gm	_cons
ses_gm	1	
_cons	.4847716	1

Here, the effects of SES turn out to be quite complex: For those who are in a public school whose SES is at their school's average and whose school itself is average in terms of its SES, the math achievement is 12.1. If you are in a Catholic school with such properties, it's 12.1+1.2=13.3. But if your school's average SES is 1 unit higher that the average for all schools, then your math achievement increases by 5.33. Further, in addition to these school-level effects, your individual SES also plays a role - if you are in an average (in terms of SES) public school, one unit increase in your SES will raise your math score by 2.94. In a Catholic school, that effect would be 2.94-1.64=1.30. But if you are in a public school and your school is 1 unit above an average school in its SES, then your personal SES impact (per one unit) would be 2.94+1.04=3.98. For a Catholic school in that situation, that effect of SES would become 2.94-1.64+1.04=2.34. Interestingly, personal SES seems to have stronger impact on math achievement in those schools that have relatively high school-level SES.

The choice between grand-mean centering and group-mean centering depends on your theoretical thinking about processes. If you think that the absolute values of level 1 variable matter, then use grand-mean centering. If you think that it is the relative position of the person with regards to their group's mean is what matters, then use group-centering. Importantly, you do not need to use group mean centering in order to use level 2 aggregated variables, such as meanses:

. mixed mathach c.s note: ses_m omitted	ses_m##i.secto d because of o	or c.ses_m## collinearity	c.meanses	id:	ses_m, co	ov(unstr)
Mixed-effects ML re Group variable: id	Numbe Numbe Obs	er of ob er of gr per grou	s = oups = p:	7,185 160		
Log likelihood = -2	23248.852		Wald Prob	chi2(5) > chi2	min = avg = max = = =	14 44.9 67 775.99 0.0000
mathach	Coefficient	Std. err.	Z	P> z	[95% cd	onf. interval]
ses_m 1.sector	2.904552 1.194948	.1481728 .3047013	19.60 3.92	0.000 0.000	2.61413 .597744	39 3.194965 43 1.792151
sector#c.ses_m 1	 –1.57687	.2242443	-7.03	0.000	-2.0163	81 -1.137359
ses_m meanses	0 3.319093	(omitted) .3847275	8.63	0.000	2.56504	41 4.073145
c.ses_m#c.meanses	.8421218	.2713517	3.10	0.002	.310283	1.373961
_cons	12.0959	.2007449	60.26	0.000	11.7024	45 12.48935
Random-effects pa	arameters	Estimate	Std. err	. [9	5% conf. :	interval]
id: Unstructured	/ var(ses_m) var(_cons) s_m,_cons)	.014443 2.339569 .1838214	.0298477 .365851 .1918724	.0 1. 1	002515 721983 922416	.8293538 3.178651 .5598844
var	(Residual)	36.7444	.6202666	35	.54859	37.98044

Level-2 predictors:

Centering issues for level-2 predictors are essentially the same issues faced in any regression. If the value of 0 for a predictor is not meaningful, the intercept will not have a meaningful interpretation and the estimate may lack precision. When these conditions exist, grand mean centering is advisable. Again, if you'd like, you can center dichotomous variables as well in order to interpret the intercept as a truly average case, adjusted for all predictors.

LEVEL 1 MODEL

MATHACH_{ii} = $\beta_{0i} + \beta_{1i}(SES_{ii} - \overline{SES}_{..}) + r_{ii}$

LEVEL 2 MODEL

 $\beta_{0j} = \gamma_{00} + \gamma_{01} (\text{SECTOR}_j - \overline{\text{SECTOR}}) + \gamma_{02} (\text{MEANSES}_j - \overline{\text{MEANSES}}) + u_{0j}$ $\beta_{1j} = \gamma_{10} + \gamma_{11} (\text{SECTOR}_j - \overline{\text{SECTOR}}) + \gamma_{12} (\text{MEANSES}_j - \overline{\text{MEANSES}}) + u_{1j}$

. mixed mathach c.ses_m##c.sector_m c.ses_m##c.meanses_m || id: ses_m, cov(unstr)
note: ses_m omitted because of collinearity.

Mixed-effects ML rega Group variable: id	Numbe: Numbe:	ups =	:	7,1	L85 160			
			op sao	er group	min = avg =	=	44	14 4.9
Log likelihood = -232	Wald Prob 2	chi2(5) > chi2	max = = =	:	775	.99)00		
mathach	Coefficient	Std. err.	Z	P> z	[9	15% c	conf.	interval]
ses_m sector_m	2.13215 1.194948	.1093559 .3047013	19.50 3.92	0.000 0.000	1. .5	9178 9774	316 143	2.346484 1.792151
c.ses_m#c.sector_m	-1.57687	.2242443	-7.03	0.000	-2.	0163	381	-1.137359
ses_m meanses_m	0 3.319093	(omitted) .3847275	8.63	0.000	2.	5650)41	4.073145
c.ses_m#c.meanses_m	.8421218	.2713517	3.10	0.002	.3	1028	322	1.373961

cons 12.705	52 .1485969 	85.50	0.000 1	2.41427	12.99676
Random-effects parameters	Estimate	Std. err.	[95% con	f. interv	 al]
id: Unstructured var(ses_m) var(_cons)	.014443 2.339569	.0298477 .365851	.0002515 1.721983	.8293 3.178	 539 651
cov(ses_m,_cons) + var(Residual)	.1838214 36.7444	.1918724 .6202665	1922416 35.54859	.5598 37.98	844 044
LR test vs. linear model: chi2	(3) = 213.73		Prob > c	hi2 = 0.0	

Note: LR test is conservative and provided only for reference.

Model Selection Strategy

To summarize, we saw that multilevel models can include 3 types of predictors:

- Level-1 predictors (e.g., student SES)
- Level-2 predictors (e.g., school SECTOR)
- Level 2 predictors that are level-1 predictors aggregated to level 2 (e.g., MEANSES)

In addition, we have a number of choices:

- The intercept can be estimated as either fixed or random (typically random)
- The effects of level 1 predictors can be estimated as either fixed effects or random effects
- Level 2 predictors can be used to predict the intercept (i.e., as direct predictors of DV)
- Level 2 predictors can explain the variation in slopes of level 1 predictors (i.e., as cross-level interactions)
- Level 1 predictors could be either grand mean centered or group mean centered

Because so many components are involved, it is best to proceed incrementally and use hypothesis testing to arrive at the most parsimonious model.

Model Development Algorithms

Two main algorithms are recommended; the first one differentiates between level 1 and level 2 variables; the second one does not.

Level-specific algorithm:

- 1. Fit a fully unconditional model (Model 0). Evaluate level 2 variance to see if HLM is necessary.
- 2. Estimate a model with random intercept and slopes using only level 1 variables and any necessary interactions among them (Model 2). Make all slopes random, unless you have substantive reasons for separating random and non-random ones. Note, however, that random slopes for interaction terms can be difficult to interpret.
- 3. Evaluate slope variance, decide whether some slopes should be non-random, and fix those slopes. (Do a joint significance test to doublecheck that all those slopes are jointly not significant.)

- 4. Based on the significance of regression coefficients, exclude variables where both coefficients and corresponding random effects are not significant. Keep the variable if the coefficient is non-significant but the random effect is. Make sure to conduct hypotheses tests to make sure these variables are jointly not significant. (Note that sometimes you might have substantive reasons to keep the variable even if its coefficient is not significant.)
- 5. Estimate means-as-outcomes with level 1 covariates model (Model 4) to select level 2 predictors of intercept (include both original level 2 variables and aggregates of level 1). Use hypothesis testing to trim the model.
- 6. For slopes with significant variance, use level 2 predictors to explain that variance (i.e., estimate an intercepts-and-slopes-as-outcomes model, Model 5). If a slope does not have significant variance but your theory suggests cross-level interaction, do include it. Use hypothesis testing to trim the model.

7. If the slope variance remaining after entering level 2 predictors is not statistically significant, estimate that slope as non-randomly varying (Model 6).

Combined algorithm:

- 1. Fit a fully unconditional model (Model 0). Evaluate level 2 variance to see if HLM is necessary.
- 2. Enter all level 2 and level 1 variables in the model, and include any within-level and cross-level interactions based on theory (Model 5). (Don't forget to use aggregates of level 1 variables.) Make all slopes random, unless you have substantive reasons for separating random and non-random ones. Note, however, that random slopes for interaction terms can be difficult to interpret.
- 3. Evaluate slope variance, decide whether some slopes should be non-random, and fix those slopes (Model 6). (Do a joint significance test to doublecheck that all those slopes are jointly not significant.)
- 4. Based on the significance of regression coefficients, exclude variables where both coefficients and corresponding random effects are not significant. Keep the variable if the coefficient is non-significant but the random effect is. Make sure to conduct hypotheses tests to make sure these variables are jointly not significant. (Note that sometimes you might have substantive reasons to keep the variable even if its coefficient is not significant.)
- 5. If there are remaining random slopes with significant variance, consider adding other cross-level interactions to explain that variance. If that leads to the random slope becoming non-significant, estimate that slope as non-randomly varying (Model 6).

Using Hypothesis Testing to Build Models

When making decisions what variables to include and whether to estimate random or fixed effects, we need to use hypothesis testing tools. We already saw how to do that for variance components but what about coefficients? We will do some recodes to HSB data for this example

. recode size (0/499=1) (500/1199=2) (1200/3000=3), gen(sized)
(7185 differences between size and sized)
. mixed mathach c.ses_m##c.sector c.ses_m##i.sized i.female##i.sector
i.female##i.sized || id: ses_m female, cov(unstr)
note: ses_m omitted because of collinearity.
note: 1.sector omitted because of collinearity.

Mixed-effects ML regression Group variable: id			Number of obs = 7,185 Number of groups = 160 Obs per group:			
					min =	14
					avg = may =	44.9
			Wa	ald chi2	(11) =	677.31
Log likelihood = ·		Prob > chi		=	0.0000	
mathach	Coefficient	Std. err.	Z	P> z	[95% conf	. interval]
ses m	3.071058	.2823452	10.88	0.000	2.517671	3.624444
sector	2.36977	.4358575	5.44	0.000	1.515505	3.224035
c.ses_m#c.sector	-1.283094	.2364085	-5.43	0.000	-1.746446	8197415
ses_m	I 0	(omitted)				
sized	1					
2	1.23097	.5676327	2.17	0.030	.1184298	2.343509
3	1.752608	.585621	2.99	0.003	.6048122	2.900404
sized#c.ses m						
2	2519453	.2923376	-0.86	0.389	8249165	.3210258
3	1277427 	.3097203	-0.41	0.680	7347833	.4792979
1.female	2816415	.4703985	-0.60	0.549	-1.203606	.6403227
1.sector	0	(omitted)				
female#sector						
1 1	1739571	.4058262	-0.43	0.668	9693619	.6214477
female#sized						
1 2	712411	.5186187	-1.37	0.170	-1.728885	.3040631
1 3	-1.308136	.5277861	-2.48	0.013	-2.342578	2736945
_cons	11.03738	.5302974	20.81	0.000	9.998014	12.07674
Random-effects parameters		Estimate	 Std. err.		[95% conf. interval]	
	+-					
id: Unstructured	var (seg m)	0864968				
	var(female)	.7588742		•		•
var(_cons)		4.090261				
cov(ses_m,female)		1480118		•	•	•
cov(ses_m,_cons)		.5930792		•	•	•
cov(fei	maie,_cons) +-	9053627		•	•	·
va:	36.36132		•	•	•	
LR test vs. linea:	r model: chi2	(6) = 311.08			Prob > chi2 =	0.0000

Note: LR test is conservative and provided only for reference. Warning: Standard-error calculation failed.

This model has problems with variance components -it is likely because SES slope variance is small and non-significant, as we discovered earlier; we will use non-randomly varying slope for SES.

. mixed mathach c.ses_m##c.sector c.ses_m##i.sized i.female##i.sector i.female##i.sized || id: female, cov(unstr)

Mixed-effects ML : Group variable: io	Nu Nu Ob	mber of mber of os per gr	obs = groups = oup: min = avg = max =	7,185 160 14 44.9 67		
Log likelihood = ·		Wa Pr	ld chi2(ob > chi	11) = 2 =	696.49 0.0000	
mathach	Coefficient	Std. err.	Z	P> z	[95% conf	. interval]
ses_m sector	3.072735 2.367085	.2756691 .4322866	11.15 5.48	0.000	2.532434 1.519818	3.613037 3.214351
c.ses_m#c.sector	 -1.276275	.2314061	-5.52	0.000	-1.729823	8227277
ses_m	0 	(omitted)				
sized 2 3	 1.276543 1.766455	.5631693 .5807222	2.27 3.04	0.023 0.002	.1727518 .6282603	2.380335 2.90465
sized#c.ses_m 2 3	 2675328 1308607	.28581 .3026749	-0.94 -0.43	0.349 0.665	8277101 7240926	.2926445 .4623711
1.female 1.sector	2465819 0	.4707665 (omitted)	-0.52	0.600	-1.169267	.6761034
female#sector 1 1	 1725857	.4063304	-0.42	0.671	9689787	.6238073
female#sized 1 2 1 3	 7773901 -1.331266 11.06016	.5187856 .5283803	-1.50 -2.52	0.134 0.012	-1.794191 -2.366872	.2394109 2956592
Random-effects]	parameters +	Estimate	Std. e	rr.	[95% conf. int	terval]
id: Unstructured	var(female) var(_cons) male,_cons)	.768301 3.992242 9597241	.55657 .68558 .51698	78 78 83 -	.1857369 3 2.851281 5 1.973003 .	.178079 .589767 0535544
va:	r(Residual)	36.43078	.61980	63	35.23601 3	7.66606
LR test vs. linea:	r model: chi2	(3) = 305.60			Prob > chi2 =	0.0000

note: ses_m omitted because of collinearity.
note: 1.sector omitted because of collinearity.

Note: LR test is conservative and provided only for reference.

1. Single parameter tests of significance.

Single parameter tests are presented in your regular HLM output; in practice, there is no need to run such tests in addition to the regular output, but for learning purposes, we will start with these. Suppose we want to test whether a specific coefficient is zero:

. test 1.female=0

(1) [mathach]1.female = 0

chi2(1) = 0.27 Prob > chi2 = 0.6004

To see how to refer to each coefficient, we look at the vector of coefficients stored in e(b):

```
. mat list e(b)
e(b)[1,29]

        mathach:
        mathach:

                    mathach:
                          ses m
               3.0727353
y1
                                                                                     mathach:mathach:mathach:mathach:mathach:3.sized#0b.1.0b.1o.c.ses_mfemalefemalesectorsector.130860710-.2465819500
                    mathach:
                                                   mathach:
                  1b.sized#
                                                 2.sized#
                                                                                                                              female female
0 -.24658195
                  co.ses_m c.ses_m
0 -.26753279
y1
                                                                                 -.13086071
                                                                                                                                                                                                     0
                    mathach:
                                                   mathach:
                                                                                      mathach:
                                                                                                                         mathach:
                                                                                                                                                             mathach:
                                                                                                                                                                                                 mathach:
                                                                                                                                                                                                                                 mathach:
               Ob.female#Ob.female#1o.female#1.female#Ob.sector10.sector0b.sector1.sector000-.17258568
                                                                                                                         1.female# 0b.female#
                                                                                                                                                                                          0b.female#
                                                                                                                                                                                                                              Ob.female#
                                                                                                                                                     1b.sized
                                                                                                                                                                                         20.sized
                                                                                                                                                                                                                             30.sized
у1
                                                                                                                                                                         0
                                                                                                                                                                                                               0
                                                                                                                                                                                                                                                      0
                    mathach:
                                                      mathach:
                                                                                         mathach:
                                                                                                                           mathach: lns1 1 1: lns1 1 2: atr1 1 1 2:

      1.female#
      1.female#

      2.sized
      3.sized
      cons
      cons

      -.77739013
      -1.3312656
      11.060155
      -.13178684
      .6921765

               10.female# 1.female#
                  1b.sized
                                                                                                                                                                                                         cons
                                                                                                                                                                                                                                             cons
у1
                                                                                                                                                                                                                            -.61550344
                             0
                    lnsig e:
                             cons
                  1.797707
v1
. test 1.female#1.sector=0
   ( 1) [mathach]1.female#1.sector = 0
```

chi2(1) = 0.18 Prob > chi2 = 0.6710

For both of these tests, we fail to reject H0 and could remove these coefficients from the model. But we often want to evaluate whether coefficients are jointly significant.

2. Multi-parameter tests of significance.

Here, we test the hypothesis that multiple coefficients are all equal to 0. Typically, we do that in order to decide whether they can be omitted from the model. This can either be coefficients for different variables (possibly related, e.g. sets of dummies), or coefficients for the same variable in different parts of the model. For example, for could test that all coefficients for SES slope are zero. That would mean testing a combined hypothesis:

G20=0 G21=0 G22=0 G23=0

```
. test ses_m=0
```

```
(1) [mathach]ses_m = 0
```

```
chi2(1) = 124.24
        Prob > chi2 = 0.0000
. test c.ses m#c.sector, acc
(1) [mathach]ses m = 0
 (2) [mathach]c.ses_m#c.sector = 0
          chi2(2) = 124.50
        Prob > chi2 = 0.0000
. test 2.sized#c.ses m=0, acc
(1) [mathach]ses m = 0
(2) [mathach]c.ses m#c.sector = 0
(3) [mathach]2.sized#c.ses m = 0
          chi2(3) = 274.60
        Prob > chi2 = 0.0000
. test 3.sized#c.ses m=0, acc
(1) [mathach]ses m = 0
( 2) [mathach]c.ses_m#c.sector = 0
( 3) [mathach]2.sized#c.ses_m = 0
(4) [mathach]3.sized#c.ses_m = 0
          chi2(4) = 543.26
        Prob > chi2 =
                       0.0000
```

We reject Ho; the coefficients associated with SES slope are jointly significant. But that is not surprising as some of these were individually significant. So this test is more frequently used to jointly test whether multiple variables that have non-significant coefficients can be omitted.

3. Tests for equality of coefficients.

We can also test whether two or more coefficients are equal. This is typically used when we have a series of related dummy variables, and we want to combine some dummies. We have two sized dummies here, so let's test whether they can be combined. We test:

```
. test 2.sized=3.sized
( 1) [mathach]2.sized - [mathach]3.sized = 0
          chi2( 1) =
                      1.12
        Prob > chi2 =
                      0.2909
. test 2.sized#c.ses_m=3.sized#c.ses_m, acc
( 1) [mathach]2.sized - [mathach]3.sized = 0
( 2) [mathach]2.sized#c.ses m - [mathach]3.sized#c.ses m = 0
          chi2( 2) =
                       1.41
        Prob > chi2 =
                        0.4953
. test 1.female#2.sized=1.female#3.sized, acc
(1) [mathach]2.sized - [mathach]3.sized = 0
      [mathach]2.sized#c.ses m - [mathach]3.sized#c.ses m = 0
(2)
```

Here, we fail to reject Ho, so we would be able to combine those variables.

Note: If we, for example, had a set of four dummies (one omitted) and wanted to combine all of them, we would do pairwise tests for each pair, dummy 2=dummy 3, dummy 2=dummy 4, dummy 3=dummy 4.

4. Tests for variance components

If we are interested in testing hypotheses about variance components or their combinations (e.g., see step 3 in both model-building algorithms), we should utilize likelihood ratio tests and BIC values, as we learned earlier (we did that for one variance component, but that can be done for multiple ones at a time by comparing a model with them to a model without). BIC values can also be used in addition to test command to evaluate whether fixed effects parameters should be omitted.