

1

SOCY7708: Hierarchical Linear Modeling

Instructor: Natasha Sarkisian

Missing data

In most datasets, we will encounter the problem of item non-response -- for various reasons

respondents often leave particular items blank on questionnaires or decline to give any response

during interviews. Sometimes the portion of such missing data can be quite sizeable. This is a

serious problem, and the more data points are missing in a dataset, the more likely it is that you

will need to address the problem of incomplete cases. But it also becomes more likely that naïve

methods of imputing or filling in values for the missing data points are most questionable

because the proportion of valid data points relative to the total number of data points is small.

We will briefly address these, still commonly used, naïve methods, and learn about more

sophisticated techniques.

Types of missing data

The most appropriate way to handle missing or incomplete data will depend upon how data

points became missing. Little and Rubin (1987) define three unique types of missing data

mechanisms.

Missing Completely at Random (MCAR):

MCAR data exists when missing values are randomly distributed across all observations. In this

case, observations with complete data are indistinguishable from those with incomplete data.

That is, whether the data point on Y is missing is not at all related to the value of Y or to the

values of any Xs in that dataset. E.g. if you are asking people their weight in a survey, some

people might fail to respond for no good reason – i.e. their nonresponse is in no way related to

what their actual weight is, and is also not related to anything else we might be measuring.

MCAR missing data often exists because investigators randomly assign research participants to

complete only some portions of a survey instrument – GSS does that a lot, asking respondents

various subsets of questions. MCAR can be confirmed by dividing respondents into those with

and without missing data, then using t-tests of mean differences on income, age, gender, and

other key variables to establish that the two groups do not differ significantly. But in real life,

MCAR assumption is too stringent for most situations other than such random assignment.

Missing at Random (MAR):

MAR data exist when the observations with incomplete data differ from those with complete

data, but the pattern of data missingness on Y can be predicted from other variables in the dataset

(Xs) and beyond that bears no relationship to Y itself – i.e., whatever nonrandom processes

existed in generating the missing data on Y can be explained by the rest of the variables in the

dataset. MAR assumes that the actual variables where data are missing are not the cause of the

incomplete data -- instead, the cause of the missing data is due to some other factor that we also

measured. E.g., one sex may be less likely to disclose its weight.

MAR is much more common than MCAR. MAR data are assumed by most methods of dealing

with missing data. It is often but not always tenable. Importantly, the more relevant and related

2

predictors we can include in statistical models, the more likely it is that the MAR assumption

will be met. Sometimes, if the data that we already have are not sufficient to make our data

MAR, we can try to introduce external data as well – e.g., estimating income based on Census

block data associated with the address of the respondent.

If we can assume that data are MAR, the best methods to deal with the missing data issue are

multiple imputation and raw maximum likelihood methods. Together, MAR and MCAR are

called ignorable missing data patterns, although that’s not quite correct as sophisticated methods

are still typically necessary to deal with them.

Not Missing at Random (NMAR or nonignorable):

The pattern of data missingness is non-random and it is not predictable from other variables in

the dataset. NMAR data arise due to the data missingness pattern being explainable only by the

very variable(s) on which the data are missing. E.g., heavy (or light) people may be less likely to

disclose their weight. NMAR data are also sometimes described as having selection bias.

NMAR data are difficult to deal with, but sometimes that’s unavoidable; if the data are NMAR,

we need to model the missing-data mechanism. Two approaches used for that are selection

models and pattern mixture; however, we will not deal with them here.

Examining missing data

When examining missing data, the first thing is to make sure you know how the missing data

were coded and take such codes into account when you do any recoding. It is also important to

distinguish two main types of missing data – sometimes questions are not applicable and

therefore not asked, but in other situations, questions are asked but not answered. It is very

important to distinguish not applicable cases because those often would be cases that you might

not want to include in the analyses or sometimes you might want to assign a certain value to

them (e.g. if someone is not employed, their hours of work might be missing because that

question was not relevant, but in fact we do know that it should be zero. Sometimes, however,

datasets code some cases “not applicable” because a respondent has refused to answer some prior

case – although coded not applicable, these cases are more likely to be an equivalent of “not

answered” – i.e. truly missing data. “Don’t know” is often a tough category – sometimes, on

ordinal scales measuring opinions, you might be able to place them as the middle category, but in

other situations, it becomes missing data.

For all examples here, we will use National Educational Longitudinal Study (NELS) (base year)

for our example; it is available on course website.

-> tabulation of bys12

 sex of |

 respondent | Freq. Percent Cum.

------------+-----------------------------------

 1 | 6,671 48.26 48.26

 2 | 7,032 50.88 99.14

 7 | 4 0.03 99.17

 8 | 115 0.83 100.00

------------+-----------------------------------

 Total | 13,822 100.00

3

. tab bys27a

 how well r |

understands |

 spoken |

 english | Freq. Percent Cum.

------------+-----------------------------------

 1 | 2,715 19.64 19.64

 2 | 345 2.50 22.14

 3 | 94 0.68 22.82

 4 | 22 0.16 22.98

 8 | 60 0.43 23.41

 9 | 10,586 76.59 100.00

------------+-----------------------------------

 Total | 13,822 100.00

. gen female=(bys12==2) if bys12<7

(119 missing values generated)

. gen spoken=bys27a

. replace spoken=. if bys27a==8

(60 real changes made, 60 to missing)

. replace spoken=1 if bys27a==9

(10586 real changes made)

. tab female, m

 female | Freq. Percent Cum.

------------+-----------------------------------

 0 | 6,671 48.26 48.26

 1 | 7,032 50.88 99.14

 . | 119 0.86 100.00

------------+-----------------------------------

 Total | 13,822 100.00

. tab spoken, m

 spoken | Freq. Percent Cum.

------------+-----------------------------------

 1 | 13,301 96.23 96.23

 2 | 345 2.50 98.73

 3 | 94 0.68 99.41

 4 | 22 0.16 99.57

 . | 60 0.43 100.00

------------+-----------------------------------

 Total | 13,822 100.00

Once you differentiated between truly missing data and the results of skip patterns, you should

examine patterns of missing data.

. misstable summarize id female spoken, all showzeros

 Obs<.

 +------------------------------

 | | Unique

 Variable | Obs=. Obs>. Obs<. | values Min Max

 -------------+--------------------------------+------------------------------

 id | 0 0 13,822 | >500 124902 9199197

 female | 119 0 13,703 | 2 0 1

 spoken | 60 0 13,762 | 4 1 4

4

. misstable patterns id female spoken, freq exok asis

 Missing-value patterns

 (1 means complete)

 | Pattern

 Frequency | 1 2

 ------------+-------------

 13,645 | 1 1

 |

 117 | 0 1

 58 | 1 0

 2 | 0 0

 ------------+-------------

 13,822 |

 Variables are (1) female (2) spoken

asis specifies that the order of the variables in the table be the same as the order in which they are

specified on the misstable command. (The default is to sort by the number of missing values.)

freq specifies that the table should report frequencies instead of percentages.

exok specifies that the extended missing values .a, .b, ..., .z should be treated as if they do not

designate missing. This allows to treat “not applicable” or deliberately skipped cases as distinct

from truly missing. You would investigate missing value patterns only after you examined skip

patterns. Before examining missing value patterns, look at skip codes and make sure to assign

these kinds of codes (.a .b .c etc. rather than a basic missing code .) to those cases that are truly

not applicable because they are not really missing.

Methods of handling missing data

Methods of handling missing data

We will briefly address various naïve methods of dealing with missing data (that are no longer

recommended), and learn to apply one of the more sophisticated techniques – multiple

imputation by chained equations.

I. Available data approaches

1. Listwise (casewise) deletion

If an observation has missing data for any one variable used in a particular analysis, we can omit

that observation from the analysis. This approach is the default method of handling incomplete

data in Stata, as well as most other commonly-used statistical software.

There is no simple decision rule for whether to drop cases with missing values, or to impute

values to replace missing values. Listwise deletion will produce unbiased results if the data are

MCAR (but our sample will be smaller so the standard errors will be higher). When the data are

MAR, listwise deletion produced biased results but they are actually less problematic than the

results of many other common naïve methods of handling missing data. For instance, if the

5

patterns of missing data on your independent variables are not related to the values of the

dependent variables, listwise deletion will produce unbiased estimates.

Still, dropping cases with missing data can reduce our sample (and therefore also reduce the

precision) substantially, and therefore we often want to avoid it. But when the number of cases

with missing data is small (e.g., less than 5% in large samples), it is common simply to drop

these cases from analysis.

2. Pairwise deletion

We can compute bivariate correlations or covariances for each pair of variables X and Y using

all cases where neither X nor Y is missing – i.e., based upon the available pairwise data. To

estimate means and variances of each of the variables, it uses all cases where that variable is not

missing. We can then use these means and covariances in subsequent analyses.

Pairwise data deletion is available in a number of SAS and SPSS statistical procedures; Stata

does not use it much and for a good reason – pairwise deletion produces biased results and

shouldn’t be used.

3. Missing data indicators

In this method, we would create a dummy variable equal to 1 in cases where X is missing, and 0

in cases where it is not. Then we would include both X and the dummy variable in the model

predicting Y. This is method is very problematic and results in biased estimates.

II. Deterministic imputation methods

1. Mean substitution

The simplest imputation method is to use a variable’s mean (or median) to fill in missing data

values. This is only appropriate when the data are MCAR, and even then this method creates a

spiked distribution at the mean in frequency distributions, lowers the correlations between the

imputed variables and the other variables, and underestimates variance. Nevertheless, it is made

available as an easy option in many SPSS procedures, and there is a procedure (STANDARD)

available for that in SAS. Still, you should avoid using it.

A type of mean substitution where the mean is calculated in a subgroup of the non-missing

values, rather than all of them, is also sometimes used; this technique also suffers from the same

problems.

2. Single regression imputation (a.k.a. conditional mean substitution)

A better method than to impute using each variable’s mean is to use regression analysis on cases

without missing data, and then use those regression equations to predict values for the cases with

missing data. This imputation technique is available in many statistical packages (for example, in

Stata there is “impute” command). This technique still has the problem that all cases with the

same values on the independent variables will be imputed with the same value on the missing

variable, thus leading to an underestimate of variance; thus, the standard errors in your models

will be lower than they should be.

6

3. Single random (stochastic) regression imputation

To improve upon the single regression imputation method, and especially to compensate for its

tendency to lower the variance and therefore lead to an underestimation of standard errors, we

can add uncertainty to the imputation of each variable so each imputed case would get a different

value. This is done by adding a random value to the predicted result. This random value is

usually the regression residual from a randomly selected case from the set of cases with no

missing values. SPSS offers stochastic regression imputation – when doing regression

imputation, SPSS by default adds the residual of a randomly picked case to each estimate.

Impute command in Stata does not offer such an option, but one can use ice command we will

learn soon to generate such imputations.

Single random regression imputation is better than regular regression imputation because it

preserves the properties of the data both in terms of means and in terms of variation. Still, this

residual is just a guess and it is likely that standard errors will be smaller than they should be.

Another remaining problem, but it’s a serious one, is that it uses imputed data as if they were real

– it doesn't allow for the variation between different possible sets of imputed values. That’s why

we need to move beyond the traditional approaches to those that try to recognize the difference

between real and imputed data.

4. Hot deck imputation

As opposed to regression imputation, hotdeck imputation is a nonparametric imputation

technique (i.e., doesn’t depend on estimating regression parameters). Hot deck imputation

involves identifying the most similar case to the case with a missing value and substituting that

most similar case’s value for the missing value. We need to specify which variables are used to

define such similarity – these variables should be related to the variable that’s being imputed.

Thus, a number of categorical variables are used to form groups, and then cases are randomly

picked within those groups. For example:

Obs Var 1 Var 2 Var 3 Var 4

1 4 1 2 3

2 5 4 2 5

3 3 4 2 .

Hot deck imputation examines the observations with complete records (obs 1 and 2) and

substitutes the value of the most similar observation for the missing data point. Here, obs 2 is

more similar to obs 3 than obs 1. New data matrix:

Obs Var 1 Var 2 Var 3 Var 4

1 4 1 2 3

2 5 4 2 5

3 3 4 2 5

After doing this imputation, we analyze the data using the complete database. Stata offers a hot

deck algorithm implemented in the hotdeck command. This procedure will tabulate the missing

data patterns for the selected variables and will define a row of data with missing values in any

of the variables as a `missing line' of data, similarly a `complete line' is one where all the

variables contain data. The hotdeck procedure replaces the variables in the `missing lines' with

7

the corresponding values in the `complete lines'. It does so within the groups specified by the

“by” variables. Note that if a dataset contains many variables with missing values then it is

possible that many of the rows of data will contain at least one missing value. The hotdeck

procedure will not work very well in such circumstances. Also, hotdeck procedure assumes is

that the missing data are MAR and that the probability of missing data can be fully accounted for

by the categorical variables specified in the `by' option.

Hotdeck imputation allows imputing with real, existing values (so categorical variables remain

categorical and continuous variables remain continuous). But it can be difficult to define

"similarity." Also, once again this approach does not distinguish between real and imputed data

and therefore will result in standard errors that are too low.

II. Maximum likelihood methods

The second group of methods we will consider are those based on maximum likelihood

estimation. There are two types of techniques in this group.

1. Expectation Maximization (EM) approach:

EM approach is a technique uses ML algorithm to generate a covariance matrix and mean

estimates given the available data, and then these estimates can be used in further analyses. All

the estimates are obtained through an iterative procedure, and each iteration has two steps. First,

in the expectation (E) step, we take estimates of the variances, covariances and means, perhaps

from listwise deletion, use these estimates to obtain regression coefficients, and then fill in the

missing data based on those coefficients. In the maximization (M) step, having filled in missing

data, we use the complete data (using estimated values) to recalculate variances, covariances, and

means. These are substituted back into the E step. The procedure iterates through these two steps

until convergence is obtained (convergence occurs when the change of the parameter estimates

from iteration to iteration becomes negligible). At that point we have maximum likelihood

estimates of variances, covariances, and means, and we can use those to make the maximum

likelihood estimates of the regression coefficients. Note that the actual imputed data are not

generated in this process; only the parameter estimates.

The SPSS Missing Values Analysis (MVA) module uses the EM approach to missing data

handling, and it’s also available in SAS as SAS-MI; as far as I know, it is not available in Stata.

The strength of the approach is that it has well-known statistical properties and it generally

outperforms available data methods and deterministic methods. The main disadvantage is that it

adds no uncertainty component to the estimated data. Thus, it still underestimates the standard

errors of the coefficients.

2. Direct ML methods

There are alternative maximum likelihood estimators that are better than the ones obtained by the

EM algorithm; these involve direct ML method, also known as raw maximum likelihood

method, or Full Information Maximum Likelihood estimation (FIML). This technique uses all

available data to generate maximum likelihood-based statistics. Like EM algorithm, direct ML

methods assume the missing values are MAR. Under an unrestricted mean and covariance

8

structure, direct ML and EM return identical parameter estimate values. Unlike EM, however,

direct ML can be employed in the context of fitting user-specified linear models. Direct ML

methods are model-based, that is, implemented as part of a fitted statistical model. This produces

standard errors and parameter estimates under the assumption that the fitted model is not false, so

parameter estimates and standard errors are model-dependent. But it also makes it difficult to

use variables that are not in the model in your imputation.

Direct ML has the advantage of convenience/ease of use and well-known statistical properties.

Unlike EM, it also allows for the direct computation of appropriate standard errors and test

statistics. Disadvantages include an assumption of joint multivariate normality of the variables

used in the analysis and the lack of an imputed dataset produced by the analysis.

Direct ML method is implemented by the EM algorithm in the SPSS Missing Values option and

MIXED procedure in SAS. It is also available in structural equation modeling packages, such as

AMOS, LISREL, MPlus, as well as Stata SEM module.

III. Multiple imputation

An alternative to the maximum likelihood is called multiple imputation (MI). In multiple

imputation we generate imputed values on the basis of existing data, but we do the imputation

more than once, each time including a random component in our imputation. This allows us to

prevent underestimating the standard errors of our regression coefficients. We do that by

combining coefficient estimates from multiple datasets using special formulas for the standard

errors. Specifically, the standard error of such estimates is equal to SQRT[(1 - 1/m)/B +W],

where m is the number of replicates, B is the variance of the imputations, and W is the average

of the estimated variance.

Multiple imputation is a sort of an approximation to Direct ML. In multiple imputation, we try a

few plausible values of missing data. In maximum likelihood, we integrate over all possible data

values, giving more weight to values that are more plausible. MI has the advantage of simplicity

over Maximum Likelihood methods, making it particularly suitable for large datasets. The

efficiency of MI is high even when the number of imputed datasets is low (3-10), although recent

literature suggests that this depends on the amount of missing data--larger amount may

necessitate more imputed datasets.

1. Multiple hot deck imputation

Multiple hot deck imputation combines the well-known statistical advantages of EM and direct

ML with the ability of hot deck imputation to provide a raw data matrix. The primary difference

between multiple hot deck imputation and regular hot deck imputation is that multiple

imputation requires that we generate five to ten datasets with imputed values. We then analyze

each database and summarize the results into one summary set of findings. Stata offers multiple

hot deck imputation as a part of the same hotdeck command we discussed earlier.

2. Multiple Imputation under the Multivariate Normal Model

9

In this approach, multiple datasets are generated with methods somewhat similar to single

random regression imputation, but with some important modifications. To impute the missing

values, we use the information from available data to generate a distribution of plausible values

for the missing data, and draw from that distribution at random multiple times to produce

multiple datasets. The imputed value is affected by two sources of random variation:

(1) It is a random draw from a conditional distribution.

(2) The conditional distribution itself must be estimated, and the estimation contains some error.

Under this method, the model for the missing data given the observed is a fully specified joint

model (e.g. multivariate normal). This is difficult to specify for a mixture of continuous and

categorical data. Therefore this method assumes all data are normal. But luckily, tests suggest

that this type of imputation is quite robust even when the simulation is based on an erroneous

model (e.g., when normality is assumed even though the underlying data are not in fact normal).

In Stata, it is available as a part of the MI package: see mi impute mvn. Since this method

assumes that all variables are continuous (even though it is fairly robust to that violation), we

will focus on learning another method, also implemented in Stata, that does not make that

assumption.

3. Multiple Imputation by Chained Equations (MICE)

Chained equations method has a similar idea but adopts a different approach. No joint

distribution is set up. Rather, we use a series of conditional distributions. E.g. if we have a

continuous X, a count variable Y, and a binary Z, and some data for each are missing, we set up

(1) a linear regression of X on Y and Z, (2) a Poisson regression of Y on X and Z, and (3) a

logistic regression of Z on X and Y. We start by fitting (1) to the observed data, then simulate

any missing X from that model. Then we fit (2) using observed Z and X (with missing values

filled out by the simulations), and simulate any missing Y. Then we fit (3) using X and Y (with

missing values filled by the simulations). We go through multiple iterations, fitting each model

in turn, and updating the simulations with each iteration, waiting for the model to converge. We

do that multiple times producing multiple datasets.

MICE is computationally simple to implement, and is available in Stata. The drawback is that the

conditionals may not specify a unique joint distribution which can make the inferences

problematic; but the simulation studies suggest it often works quite well, so it is increasingly

used. Another problem for multilevel models is that there are special implementations of MICE

for multilevel data, but these are not yet available in Stata, you would need to go to R for those,

but hopefully that changes soon.

A few rules crucial for implementing any type of MI:

• All variables included in your models should be included in the imputation process; you

can also add auxiliary variables that would improve predictions for some variables

included in the model.

• Dependent variable should always be included in the imputation process, but there are

different opinions on whether their imputed values should be subsequently discarded (this

is called MID—multiple imputation then deletion) – for a while, the consensus was that

MID was better than regular MI (i.e., that it is better to drop the imputed values of the

dependent variable), but recent work suggests that the two approaches produce equivalent

10

results. What is clear is that it is definitely beneficial to keep imputed values of the

dependent variable in a situation when additional variables were used in imputing this

dependent variable—such supplementary variables enhance the imputation of the

dependent variable but are not included in final data analysis models. In this case,

imputed values of the dependent variable contain extra information and should definitely

be preserved. (To better understand this situation, see: von Hippel, Paul T. 2007.

Regression with Missing Ys: An Improved Strategy for Analyzing Multiply Imputed

Data. Sociological Methodology 37(1), 83-117.)

• If you have interactions or nonlinear relationships among the variables, you should create

the variables for those before doing the imputations – otherwise the imputed values will

only reflect the linear relationships among the variables. There is some disagreement,

however, whether those interactions and nonlinear terms should be imputed separately

(this is known as “Just Another Variable” approach) or be a product of imputations of

main terms.

• If you are using categorical variables as sets of dummies, you need to create single

variables representing those sets before doing the imputation, even if you only plan to use

them as dummies later on.

• It is helpful to transform skewed variables before imputing, then back-transform them for

analyses.

• Only “soft” missing data (those denoted by just a dot) get imputed – “hard” missing data

– e.g., .a, .b, etc. – do not get imputed.

• Another issue to consider when using multiple imputation is the number of datasets to

impute. The larger the amount of missing data, the more datasets you’d need to avoid loss

of efficiency. Typically, 5-10 can be sufficient, but with a lot of missing data, you might

need up to 20. You can consult the following article for the info on that: Graham, J. W.,

A. E. Olchowski, and T. D. Gilreath. 2007. How many imputations are really

needed? Some practical clarifications of multiple imputation theory. Prevention Science

8(3): 206-213.

• If you want to do exploratory analyses, generate an extra imputed dataset specifically for

that part of the analysis; then, for the final results, run your model on a number of other

imputed datasets, not including the preliminary one.

• MICE is not designed specifically for multilevel data, so you will have to make

adjustments to account for your data structure. There are versions of MICE for multilevel

data in R – hopefully they will be implemented in Stata soon as well; see more details in

the assigned readings.

• Multiple imputation of a longitudinal dataset should be done on a wide rather than long

dataset (i.e., there should be separate variables for each year of data, rather than multiple

observations within each case). That will allow you to use observations from one year to

impute data in another year, which will improve the quality of prediction as well as

account for the clustered nature of the data. To change between long and wide format of

data in Stata, you can use reshape command (or mi reshape after imputation).

• For a longitudinal dataset, additional problems will be created by attrition—loss of cases

over time for various reasons. It is possible to estimate models even if you have different

number of time points for different cases, but oftentimes it is useful to conduct sensitivity

analyses and check how the results would look like if those cases that are missing entirely

11

at certain time points are imputed (either under MAR assumption or using, for example,

sensitivity testing approaches for NMAR; see below).

• When imputing multilevel datasets that are not longitudinal, we need to include

information about clusters. The most common method available in Stata is to include

dummy variables that serve as cluster indicators as separate variables in the imputation

process. This method is fully appropriate if you are planning to only have random

intercept but not random slopes. If you plan to have random slopes, you could try to

include interactions of these cluster dummies with each of the independent variables that

should have random slopes, although this will likely be too many variables, especially if

you have multiple random slopes. (You might want to explore the issue of which random

slopes you want to include using listwise deletion dataset in order to limit the number of

interactions to include.) Another approach is to perform imputation separately for each

cluster – but the clusters would have to be quite large for this approach to be feasible.

Again, specialized R packages might be preferable.

• If you have missing data on level 2, do the multiple imputation separately for that level.

To do that, aggregate all your level 1 variables (dependent and independent) by averaging

them across level 2 units, and combine these aggregated variables with the level 2

variables into a separate level 2 dataset. Do the multiple imputation for that dataset. Then,

for level 1, if you use cluster dummies, then just do level 1 imputation without any level

2 variables and then merge the two imputed datasets. If using level 2 predictors rather

than cluster dummies, then combine each of the multiply imputed level 2 datasets with

the level 1 dataset (before doing any imputation on level 1). After that, do the imputation

for level 1 dataset using imputed level 2 variables -- you should generate one imputation

per each merged dataset.

Example for learning MICE

School level variables:

. tab bysc30, m

 is this a |

 public |

 school | Freq. Percent Cum.

------------+-----------------------------------

 1 | 11,342 82.06 82.06

 2 | 2,295 16.60 98.66

 . | 185 1.34 100.00

------------+-----------------------------------

 Total | 13,822 100.00

. gen public=bysc30==1 if bysc30<.

(185 missing values generated)

. tab public, m

 public | Freq. Percent Cum.

------------+-----------------------------------

 0 | 2,295 16.60 16.60

 1 | 11,342 82.06 98.66

 . | 185 1.34 100.00

------------+-----------------------------------

 Total | 13,822 100.00

12

. tab bysc16e, m

 pct of |

students in |

 english as |

 2nd lang | Freq. Percent Cum.

------------+-----------------------------------

 0 | 10,293 74.47 74.47

 1 | 1,111 8.04 82.51

 2 | 408 2.95 85.46

 3 | 278 2.01 87.47

 4 | 249 1.80 89.27

 5 | 176 1.27 90.54

 6 | 147 1.06 91.61

 7 | 190 1.37 92.98

 8 | 82 0.59 93.58

 9 | 65 0.47 94.05

 10 | 104 0.75 94.80

 11 | 47 0.34 95.14

 12 | 75 0.54 95.68

 13 | 46 0.33 96.01

 14 | 9 0.07 96.08

 15 | 34 0.25 96.32

 16 | 19 0.14 96.46

 17 | 16 0.12 96.58

 18 | 30 0.22 96.79

 19 | 25 0.18 96.98

 22 | 59 0.43 97.40

 24 | 9 0.07 97.47

 25 | 37 0.27 97.74

 32 | 18 0.13 97.87

 33 | 5 0.04 97.90

 34 | 18 0.13 98.03

 42 | 18 0.13 98.16

 43 | 5 0.04 98.20

 9998 | 64 0.46 98.66

 . | 185 1.34 100.00

------------+-----------------------------------

 Total | 13,822 100.00

. gen pct_esl=bysc16e

(185 missing values generated)

. replace pct_esl=. if bysc16e==9998

(64 real changes made, 64 to missing)

. tab pct_esl, m

 pct_esl | Freq. Percent Cum.

------------+-----------------------------------

 0 | 10,293 74.47 74.47

 1 | 1,111 8.04 82.51

 2 | 408 2.95 85.46

 3 | 278 2.01 87.47

 4 | 249 1.80 89.27

 5 | 176 1.27 90.54

 6 | 147 1.06 91.61

 7 | 190 1.37 92.98

 8 | 82 0.59 93.58

 9 | 65 0.47 94.05

 10 | 104 0.75 94.80

13

 11 | 47 0.34 95.14

 12 | 75 0.54 95.68

 13 | 46 0.33 96.01

 14 | 9 0.07 96.08

 15 | 34 0.25 96.32

 16 | 19 0.14 96.46

 17 | 16 0.12 96.58

 18 | 30 0.22 96.79

 19 | 25 0.18 96.98

 22 | 59 0.43 97.40

 24 | 9 0.07 97.47

 25 | 37 0.27 97.74

 32 | 18 0.13 97.87

 33 | 5 0.04 97.90

 34 | 18 0.13 98.03

 42 | 18 0.13 98.16

 43 | 5 0.04 98.20

 . | 249 1.80 100.00

------------+-----------------------------------

 Total | 13,822 100.00

. tab bysc47g

 teacher |

 morale is |

 high | Freq. Percent Cum.

------------+-----------------------------------

 1 | 247 1.81 1.81

 2 | 639 4.69 6.50

 3 | 2,198 16.12 22.61

 4 | 6,490 47.59 70.21

 5 | 4,032 29.57 99.77

 8 | 31 0.23 100.00

------------+-----------------------------------

 Total | 13,637 100.00

. gen morale=bysc47g

(185 missing values generated)

. replace morale=. if bysc47g==8

(31 real changes made, 31 to missing)

. tab morale, m

 morale | Freq. Percent Cum.

------------+-----------------------------------

 1 | 247 1.79 1.79

 2 | 639 4.62 6.41

 3 | 2,198 15.90 22.31

 4 | 6,490 46.95 69.27

 5 | 4,032 29.17 98.44

 . | 216 1.56 100.00

------------+-----------------------------------

 Total | 13,822 100.00

Individual level variables:

We already created female and spoken earlier so we will use them. Our dependent variable will

be science standardized scores:

. sum by2xsstd

14

 Variable | Obs Mean Std. Dev. Min Max

-------------+--

 by2xsstd | 13822 52.60967 13.75539 31.62 99.99

. tab by2xsstd if by2xsstd>=99.98

 science |

standardize |

 d score | Freq. Percent Cum.

------------+-----------------------------------

 99.98 | 43 7.85 7.85

 99.99 | 505 92.15 100.00

------------+-----------------------------------

 Total | 548 100.00

. gen science= by2xsstd

. replace science=. if by2xsstd>=99.98

(548 real changes made, 548 to missing)

We will also create a few additional independent variables for level 1:

Parents’ education:

BYPARED Parent Qx Student Qx Label

01 1, 2 1 Did not finish high school

02 3, 4 2 High school grad or GED

03 5-10 3, 4 GT H.S. & LT 4 year degree

04 11 5 College graduate

05 12 6 M.A. or equivalent

06 13 7 Ph.D., M.D., other

07 - 8 Don't know

98 Missing

. tab bypared, m

 parents |

 highest |

 education |

 level | Freq. Percent Cum.

------------+-----------------------------------

 1 | 1,562 11.30 11.30

 2 | 2,874 20.79 32.09

 3 | 5,561 40.23 72.33

 4 | 1,930 13.96 86.29

 5 | 1,126 8.15 94.44

 6 | 664 4.80 99.24

 7 | 93 0.67 99.91

 98 | 12 0.09 100.00

------------+-----------------------------------

 Total | 13,822 100.00

. recode bypared (1=10) (2=12) (3=14) (4=16) (5=18) (6=20) (7=.) (98=.), gen(pared)

(13822 differences between bypared and pared)

. tab pared, m

 RECODE of |

 bypared |

 (parents |

 highest |

15

 education |

 level) | Freq. Percent Cum.

------------+-----------------------------------

 10 | 1,562 11.30 11.30

 12 | 2,874 20.79 32.09

 14 | 5,561 40.23 72.33

 16 | 1,930 13.96 86.29

 18 | 1,126 8.15 94.44

 20 | 664 4.80 99.24

 . | 105 0.76 100.00

------------+-----------------------------------

 Total | 13,822 100.00

Race:

1 950 6.9 API

2 1858 13.6 HISPANIC

3 1464 10.7 BLACK,NON-HISPANIC

4 8896 65.0 WHITE,NON-HISPANIC

5 514 3.8 AMERICAN INDIAN

{blank} 1093 .0 {NONR/NOT IN SAMPLE THIS WAVE}

6 25 .0 {MULTIPLE RESPNSE}

7 25 .0 {REFUSAL}

8 90 .0 {MISSING}

. tab bys31a, m

 rs |

race/ethnic |

 background | Freq. Percent Cum.

------------+-----------------------------------

 1 | 950 6.87 6.87

 2 | 1,858 13.44 20.32

 3 | 1,464 10.59 30.91

 4 | 8,896 64.36 95.27

 5 | 514 3.72 98.99

 6 | 25 0.18 99.17

 7 | 25 0.18 99.35

 8 | 90 0.65 100.00

------------+-----------------------------------

 Total | 13,822 100.00

. recode bys31a (4=1) (3=2) (2=3) (1=4) (5=5) (6/8=.), gen(race5)

(13308 differences between bys31a and race5)

. tab race5, m

 RECODE of |

 bys31a (rs |

race/ethnic |

background) | Freq. Percent Cum.

------------+-----------------------------------

 1 | 8,896 64.36 64.36

 2 | 1,464 10.59 74.95

 3 | 1,858 13.44 88.40

 4 | 950 6.87 95.27

 5 | 514 3.72 98.99

 . | 140 1.01 100.00

------------+-----------------------------------

 Total | 13,822 100.00

16

. gen white=(race5==1) if race5<.

(140 missing values generated)

. gen black=(race5==2) if race5<.

(140 missing values generated)

. gen latino=(race5==3) if race5<.

(140 missing values generated)

. gen asian=(race5==4) if race5<.

(140 missing values generated)

. gen native=(race5==5) if race5<.

(140 missing values generated)

Creating a reduced dataset:

. keep id sch_id sstratid public pct_esl morale science female spoken pared race5

white black latino asian native

Aggregating level 1 variables and creating level 2 dataset:

. for var science female spoken pared white black latino asian native: bysort sch_id:

egen Xm=mean(X)

-> bysort sch_id: egen sciencem=mean(science)

(229 missing values generated)

-> bysort sch_id: egen femalem=mean(female)

(10 missing values generated)

-> bysort sch_id: egen spokenm=mean(spoken)

-> bysort sch_id: egen paredm=mean(pared)

-> bysort sch_id: egen whitem=mean(white)

(34 missing values generated)

-> bysort sch_id: egen blackm=mean(black)

(34 missing values generated)

-> bysort sch_id: egen latinom=mean(latino)

(34 missing values generated)

-> bysort sch_id: egen asianm=mean(asian)

(34 missing values generated)

-> bysort sch_id: egen nativem=mean(native)

(34 missing values generated)

. bysort sch_id: gen case=_n

. save "C:\Users\sarkisin\nels_science.dta"

file C:\Users\nels_science.dta saved

. drop if case~=1

(12809 observations deleted)

. sum sch_id

 Variable | Obs Mean Std. Dev. Min Max

-------------+--

17

 sch_id | 1013 46197.74 26628.62 1249 91991

. drop id science- spoken case

. save "C:\Users\sarkisin\nels_science_lev2.dta"

file C:\Users\sarkisin\nels_science_lev2.dta saved

Learning to use MICE

MICE is available both within the mi module in Stata as well as a separate package. I will mostly

demonstrate its use with the separate package but also introduce the mi module version (mi

impute chained).

For a separate module, you find the command using
. net search mice

You need to install st0067_4 from http://www.stata-journal.com/software/sj9-3

Here’s the syntax:
ice mainvarlist [if] [in] [weight] [, ice_major_options ice_less_used_options]

 ice_major_options description

 --

 clear clears the original data from memory and

 loads the imputed dataset into memory

 dryrun reports the prediction equations -- no

 imputations are done

 eq(eqlist) defines customized prediction equations

 m(#) defines the number of imputations

 match[(varlist)] prediction matching for each member of

 varlist

 passive(passivelist) passive imputation

 saving(filename [, replace]) imputed and nonimputed variables are

 stored to filename

 --

ice_less_used_options description

 --

 boot[(varlist)] estimates regression coefficients for

 varlist in a bootstrap sample

 by(varlist) imputation within the levels implied by

 varlist

 cc(varlist) prevents imputation of missing data in

 observations in which varlist has a

 missing value

 cmd(cmdlist) defines regression command(s) to be used

 for imputation

 conditional(condlist) conditional imputation

 cycles(#) determines number of cycles of regression

 switching

 dropmissing omits all observations not in the

 estimation sample from the output

 eqdrop(eqdroplist) removes variables from prediction

 equations

 genmiss(string) creates missingness indicator variable(s)

 id(newvar) creates newvar containing the original

 sort order of the data

 interval(intlist) imputes interval-censored variables

 monotone assumes pattern of missingness is

18

 monotone, and creates relevant

 prediction equations

 noconstant suppresses the regression constant

 nopp suppresses special treatment of perfect

 prediction

 noshoweq suppresses presentation of prediction

 equations

 noverbose suppresses messages showing the progress

 of the imputations

 nowarning suppresses warning messages

 on(varlist) imputes each member of mainvarlist

 univariately

 orderasis enters the variables in the order given

 persist ignores errors when trying to impute

 "difficult" variables and/or models

 restrict([varname] [if]) fits models on a specified subsample,

 impute missing data for entire

 estimation sample

 seed(#) sets random-number seed

 substitute(sublist) substitutes dummy variables for multilevel

 categorical variables

 trace(trace_filename) monitors convergence of the imputation

 algorithm

 --

Sets of imputed and nonimputed variables are stored to a new file specified using saving option.

Option replace permits filename to be overwritten with new data. Any number of complete

imputations may be created (defined by option m). We start with multiple imputation for level 2.

Let’s examine missing data:

. misstable summarize public pct_esl morale sciencem femalem spokenm paredm blackm

latinom asianm nativem, all showzeros

 Obs<.

 +------------------------------

 | | Unique

 Variable | Obs=. Obs>. Obs<. | values Min Max

 -------------+--------------------------------+------------------------------

 public | 17 0 996 | 2 0 1

 pct_esl | 22 0 991 | 28 0 43

 morale | 19 0 994 | 5 1 5

 sciencem | 21 0 992 | >500 34.50857 71.11

 femalem | 2 0 1,011 | 125 0 1

 spokenm | 0 0 1,013 | 74 1 3

 paredm | 0 0 1,013 | 352 10 20

 blackm | 3 0 1,010 | 95 0 1

 latinom | 3 0 1,010 | 126 0 1

 asianm | 3 0 1,010 | 82 0 .9285714

 nativem | 3 0 1,010 | 57 0 1

. misstable patterns public pct_esl morale sciencem femalem spokenm paredm blackm

latinom asianm nativem, freq exok asis

 Missing-value patterns

 (1 means complete)

 | Pattern

 Frequency | 1 2 3 4 5 6 7 8 9

 ------------+--------------------------------

 966 | 1 1 1 1 1 1 1 1 1

 |

19

 18 | 1 1 1 0 1 1 1 1 1

 14 | 0 0 0 1 1 1 1 1 1

 5 | 1 0 1 1 1 1 1 1 1

 3 | 0 0 0 0 1 1 1 1 1

 3 | 1 1 1 1 1 0 0 0 0

 2 | 1 1 0 1 1 1 1 1 1

 2 | 1 1 1 1 0 1 1 1 1

 ------------+--------------------------------

 1,013 |

 Variables are (1) public (2) pct_esl (3) morale (4) sciencem (5) femalem (6)

blackm (7) latinom (8) asianm (9) nativem

Before we run actual multiple imputation using ICE, we will do a dry run – check that everything

looks correct, without generating actual datasets:

. ice public pct_esl morale sciencem femalem spokenm paredm blackm latinom asianm

nativem, saving("C:\Users\sarkisin\nels_imputed.dta", replace) m(5) cmd(morale:

ologit)

 #missing |

 values | Freq. Percent Cum.

------------+-----------------------------------

 0 | 966 95.36 95.36

 1 | 27 2.67 98.03

 3 | 14 1.38 99.41

 4 | 6 0.59 100.00

------------+-----------------------------------

 Total | 1,013 100.00

 Variable | Command | Prediction equation

------------+---------+---

 public | logit | pct_esl morale sciencem femalem spokenm paredm blackm

 | | latinom asianm nativem

 pct_esl | regress | public morale sciencem femalem spokenm paredm blackm

 | | latinom asianm nativem

 morale | ologit | public pct_esl sciencem femalem spokenm paredm blackm

 | | latinom asianm nativem

 sciencem | regress | public pct_esl morale femalem spokenm paredm blackm

 | | latinom asianm nativem

 femalem | regress | public pct_esl morale sciencem spokenm paredm blackm

 | | latinom asianm nativem

 spokenm | | [No missing data in estimation sample]

 paredm | | [No missing data in estimation sample]

 blackm | regress | public pct_esl morale sciencem femalem spokenm paredm

 | | latinom asianm nativem

 latinom | regress | public pct_esl morale sciencem femalem spokenm paredm

 | | blackm asianm nativem

 asianm | regress | public pct_esl morale sciencem femalem spokenm paredm

 | | blackm latinom nativem

 nativem | regress | public pct_esl morale sciencem femalem spokenm paredm

 | | blackm latinom asianm

--

End of dry run. No imputations were done, no files were created.

Note that I did not include whitem because it would create collinearity problems. Also note that

in cmd option, we specified that we want to use ologit for morale. The default cmd for a variable

is logit when there are two distinct values, mlogit when there are 3-5 and regress otherwise. Note

that unless the dataset is large, use of the mlogit command may produce unstable estimates if the

number of levels is too large.

20

This way, ologit is used to impute morale, but morale variable itself is used as if it were

continuous when imputing other variables. If we want to break it up into dummies when

imputing other variables, we can use o. prefix:

. ice public pct_esl o.morale sciencem femalem spokenm paredm blackm latinom asianm

nativem, saving("C:\Users\sarkisin\nels_imputed.dta", replace) m(5) dryrun

=> xi: ice public pct_esl morale i.morale sciencem femalem spokenm paredm blackm

latinom asianm nativem, cmd(morale:ologit) substitute(morale:i.morale)

> saving(C:\Users\sarkisin\nels_imputed.dta, replace) m(5) dryrun

i.morale _Imorale_1-5 (naturally coded; _Imorale_1 omitted)

 #missing |

 values | Freq. Percent Cum.

------------+-----------------------------------

 0 | 966 95.36 95.36

 1 | 27 2.67 98.03

 3 | 14 1.38 99.41

 4 | 6 0.59 100.00

------------+-----------------------------------

 Total | 1,013 100.00

 Variable | Command | Prediction equation

------------+---------+---

 public | logit | pct_esl _Imorale_2 _Imorale_3 _Imorale_4 _Imorale_5

 | | sciencem femalem spokenm paredm blackm latinom asianm

 | | nativem

 pct_esl | regress | public _Imorale_2 _Imorale_3 _Imorale_4 _Imorale_5

 | | sciencem femalem spokenm paredm blackm latinom asianm

 | | nativem

 morale | ologit | public pct_esl sciencem femalem spokenm paredm blackm

 | | latinom asianm nativem

 _Imorale_2 | | [Passively imputed from (morale==2)]

 _Imorale_3 | | [Passively imputed from (morale==3)]

 _Imorale_4 | | [Passively imputed from (morale==4)]

 _Imorale_5 | | [Passively imputed from (morale==5)]

 sciencem | regress | public pct_esl _Imorale_2 _Imorale_3 _Imorale_4

 | | _Imorale_5 femalem spokenm paredm blackm latinom

 | | asianm nativem

 femalem | regress | public pct_esl _Imorale_2 _Imorale_3 _Imorale_4

 | | _Imorale_5 sciencem spokenm paredm blackm latinom

 | | asianm nativem

 spokenm | | [No missing data in estimation sample]

 paredm | | [No missing data in estimation sample]

 blackm | regress | public pct_esl _Imorale_2 _Imorale_3 _Imorale_4

 | | _Imorale_5 sciencem femalem spokenm paredm latinom

 | | asianm nativem

 latinom | regress | public pct_esl _Imorale_2 _Imorale_3 _Imorale_4

 | | _Imorale_5 sciencem femalem spokenm paredm blackm

 | | asianm nativem

 asianm | regress | public pct_esl _Imorale_2 _Imorale_3 _Imorale_4

 | | _Imorale_5 sciencem femalem spokenm paredm blackm

 | | latinom nativem

 nativem | regress | public pct_esl _Imorale_2 _Imorale_3 _Imorale_4

 | | _Imorale_5 sciencem femalem spokenm paredm blackm

 | | latinom asianm

--

21

Similarly, m. can be used when the variable is nominal rather than ordinal; for nominal variables,

always use m. rather than cmd option – otherwise, you would be treating your nominal variable

as if it’s continuous when imputing other variables. Specifying m. tells Stata that we want to use

mlogit to impute that variable and that we want to use this nominal variable as a set of dummies

when imputing other variables. Also, in general, if your dataset has a number of dummies instead

(e.g., if we had separate dummies for black and Hispanic for race), it is a good idea to generate a

multicategory variable first and use that variable rather than separate dummies in the imputation

process—otherwise, your dummies will be imputed independently and therefore can end up

overlapping.

Since our dry run looks good, we can generate imputed data:
. ice public pct_esl morale sciencem femalem spokenm paredm blackm latinom asianm

nativem, saving("C:\Users\sarkisin\nels_imputed.dta", replace) m(5) cmd(morale:

ologit)

 #missing |

 values | Freq. Percent Cum.

------------+-----------------------------------

 0 | 966 95.36 95.36

 1 | 27 2.67 98.03

 3 | 14 1.38 99.41

 4 | 6 0.59 100.00

------------+-----------------------------------

 Total | 1,013 100.00

 Variable | Command | Prediction equation

------------+---------+---

 public | logit | pct_esl morale sciencem femalem spokenm paredm blackm

 | | latinom asianm nativem

 pct_esl | regress | public morale sciencem femalem spokenm paredm blackm

 | | latinom asianm nativem

 morale | ologit | public pct_esl sciencem femalem spokenm paredm blackm

 | | latinom asianm nativem

 sciencem | regress | public pct_esl morale femalem spokenm paredm blackm

 | | latinom asianm nativem

 femalem | regress | public pct_esl morale sciencem spokenm paredm blackm

 | | latinom asianm nativem

 spokenm | | [No missing data in estimation sample]

 paredm | | [No missing data in estimation sample]

 blackm | regress | public pct_esl morale sciencem femalem spokenm paredm

 | | latinom asianm nativem

 latinom | regress | public pct_esl morale sciencem femalem spokenm paredm

 | | blackm asianm nativem

 asianm | regress | public pct_esl morale sciencem femalem spokenm paredm

 | | blackm latinom nativem

 nativem | regress | public pct_esl morale sciencem femalem spokenm paredm

 | | blackm latinom asianm

--

Imputing .

[Perfect prediction detected: using auglogit to impute public]

.........1

[Perfect prediction detected: using auglogit to impute public]

..........2

[Perfect prediction detected: using auglogit to impute public]

..........3

[Perfect prediction detected: using auglogit to impute public]

..........4.

[Perfect prediction detected: using auglogit to impute public]

22

.........5

(note: file C:\Users\sarkisin\nels_imputed.dta not found)

file C:\Users\sarkisin\nels_imputed.dta saved

Some additional options for ice (see help ice for more):

eq(eqlist) allows one to define customized prediction equations for any subset of variables. The

default is that each variable in mainvarlist with any missing data is imputed from all the other

variables in mainvarlist. The option allows great flexibility in the possible imputation schemes.

The syntax of eqlist is varname1:varlist1 [,varname2:varlist2 ...], where each varname# (or

varlist#) is a member (or subset) of mainvarlist. It is important to ensure that each equation is

sensible. ice places no restrictions except to check that all variables mentioned are indeed in

mainvarlist.

. ice public pct_esl morale sciencem femalem spokenm paredm blackm latinom asianm

nativem, saving(imputed.dta, replace) m(5) cmd(morale: ologit) eq(pct_esl:sciencem

femalem spokenm) dryrun

 #missing |

 values | Freq. Percent Cum.

------------+-----------------------------------

 0 | 966 95.36 95.36

 1 | 27 2.67 98.03

 3 | 14 1.38 99.41

 4 | 3 0.30 99.70

 5 | 3 0.30 100.00

------------+-----------------------------------

 Total | 1,013 100.00

 Variable | Command | Prediction equation

------------+---------+---

 public | logit | pct_esl morale sciencem femalem spokenm paredm whitem

 | | blackm latinom asianm nativem

 pct_esl | regress | sciencem femalem spokenm

 morale | ologit | public pct_esl sciencem femalem spokenm paredm whitem

 | | blackm latinom asianm nativem

 sciencem | regress | public pct_esl morale femalem spokenm paredm whitem

 | | blackm latinom asianm nativem

 femalem | regress | public pct_esl morale sciencem spokenm paredm whitem

 | | blackm latinom asianm nativem

 spokenm | | [No missing data in estimation sample]

 paredm | | [No missing data in estimation sample]

 whitem | regress | public pct_esl morale sciencem femalem spokenm paredm

 | | blackm latinom asianm nativem

 blackm | regress | public pct_esl morale sciencem femalem spokenm paredm

 | | whitem latinom asianm nativem

 latinom | regress | public pct_esl morale sciencem femalem spokenm paredm

 | | whitem blackm asianm nativem

 asianm | regress | public pct_esl morale sciencem femalem spokenm paredm

 | | whitem blackm latinom nativem

 nativem | regress | public pct_esl morale sciencem femalem spokenm paredm

 | | whitem blackm latinom asianm

--

End of dry run. No imputations were done, no files were created.

Note that I used dryrun option to just check whether the equations work.

23

Eqdrop option: This option specifies which variables to omit from certain equations. You should

omit as little as possible in order to make imputation run. The syntax of eqdroplist is

varname1:varlist1 [, varname2:varlist2 ...]. For example:

. ice public pct_esl morale sciencem femalem spokenm paredm blackm latinom asianm

nativem, saving(imputed.dta, replace) m(5) cmd(morale: ologit) eqdrop(pct_esl: paredm

blackm latinom asianm nativem) dryrun

One more useful option, genmiss(name), creates an indicator variable for the missingness of data

in any variable in mainvarlist for which at least one value has been imputed. The indicator

variable is set to missing for observations excluded by if, in, etc. The indicator variable for xvar

is named namexvar (of course, you get to specify the actual name).

Passive option: If we are using interactions, for example, between x1 and x2 (e.g., x12=x1*x2),

we should use passive option, passive(x12:x1*x2). For example:

. sum science

 Variable | Obs Mean Std. Dev. Min Max

-------------+--

 sciencem | 992 50.56493 5.597011 34.50857 71.11

. gen sciencem_m=sciencem-r(mean)

(21 missing values generated)

. sum female

 Variable | Obs Mean Std. Dev. Min Max

-------------+--

 femalem | 1011 .5072957 .1963534 0 1

. gen femalem_m=female-r(mean)

(2 missing values generated)

. gen scifemm= sciencem_m* femalem_m

(23 missing values generated)

. ice public pct_esl morale science_m female_m spokenm paredm blackm latinom asianm

native scifemm, saving("C:\Users\sarkisin\nels_imputed.dta", replace) m(5) cmd(morale:

ologit) dryrun passive(scifemm: science_m*female_m)

However, some people recently have been arguing that interactions and nonlinear terms should

not be imputed passively and instead should be imputed separately – this is known as “Just

Another Variable” approach.

Persist option: If we are using a lot of dummies, we are likely to run into errors when running

imputation, especially in logit-based models. You can tell Stata to ignore those errors by

specifying “persist” option; however, the resulting imputation would be problematic. You might

want to use it to see which variables keep creating errors and then exclude those variables from

corresponding equations using eqdrop option.

Conditional option: This option specifies criteria for inclusion/exclusion of cases during

imputation; it is useful when your variable should only have values for a subset for the whole

sample. For example:

24

. ice public pct_esl morale sciencem femalem spokenm paredm blackm latinom asianm

nativem, saving("C:\Users\sarkisin\nels_imputed.dta", replace) m(5) cmd(morale:

ologit) dryrun conditional(sciencem: public==1 \ morale: public==1)

Interval option: This option can be used to limit the range of a variable during imputation

(because it should not be top or bottom coded afterwards!):

gen pct_eslll=pct_esl

gen pct_eslul=pct_esl

replace pct_eslll=0 if pct_esl==.

replace pct_eslul=100 if pct_esl==.

ice public pct_esl morale sciencem femalem spokenm paredm blackm latinom asianm

nativem, saving("C:\Users\sarkisin\nels_imputed.dta", replace) m(5) cmd(morale:

ologit) dryrun seed(1234) interval(pct_esl: pct_eslll pct_eslul)

Seed option: This option allows to make a fixed starting point for random number generation, so

that every time you run that command, you get exactly the same imputed datasets rather than

different ones every time. For example:

ice public pct_esl morale sciencem femalem spokenm paredm blackm latinom asianm

nativem, saving("C:\Users\sarkisin\nels_imputed.dta", replace) m(5) cmd(morale:

ologit) dryrun seed(1234)

If your dataset is large and your model includes many variables, you might run into problems

running imputation in Intercooled Stata (Stata IC). In that case, try Stata SE, it is available at

apps.bc.edu – you would want to specify large matsize, e.g.:

. set matsize 1200

Note that imputation is often a pretty slow process, especially if your dataset is large. And you

often have to keep adjusting the imputation model until it runs without errors.

Stata built-in module

To do the same thing with the Stata built-in module, we need to first specify the style of imputed

data storage and register variables. The styles are specified with mi set command and to better

understand them, we look at the example from Stata documentation: type help mi_styles to see

four styles: wide, flong, mlong, and flongsep.

Original dataset, with two variables – a and b, as well as a third variable that is equal to their sum

c=a+b – and two cases (observations), with one missing value:
 +-------------------+

 | a b c |

 |-------------------|

 | 1 2 3 |

 | 4 . . |

 +-------------------+

We are doing two imputations (M=2), which generate different guesses for the missing values of

b for case #2. We have two imputed values for b for that case, namely, 4.5 and 5.5. The resulting

datasets are m=0 (original data), m=1, and m=2.

25

 +-------------------+

 m=0: | a b c |

 |-------------------|

 | 1 2 3 |

 | 4 . . |

 +-------------------+

 +-------------------+

 m=1: | a b c |

 |-------------------|

 | 1 2 3 |

 | 4 4.5 8.5 |

 +-------------------+

 +-------------------+

 m=2: | a b c |

 |-------------------|

 | 1 2 3 |

 | 4 5.5 9.5 |

 +-------------------+

In mi terminology in Stata module, a is a regular variable, b is an imputed variable, and c is a

passive variable.

We can store the resulting data differently.

1. Style wide

 +--+

 | a b c _1_b _2_b _1_c _2_c _mi_miss |

 |--|

 1. | 1 2 3 2 2 3 3 0 |

 2. | 4 . . 4.5 5.5 8.5 9.5 1 |

 +--+

 Here, _mi_miss contains 0 for complete observations and 1 for incomplete observations.

Style flong

 +---+
 | a b c _mi_miss _mi_m _mi_id |

 |---|

 1. | 1 2 3 0 0 1 |

 2. | 4 . . 1 0 2 |

 |---|

 3. | 1 2 3 . 1 1 |

 4. | 4 4.5 8.5 . 1 2 |

 |---|

 5. | 1 2 3 . 2 1 |

 6. | 4 5.5 9.5 . 2 2 |

 +---+

In addition to _mi_miss (which only has values in m=0, the original dataset), we also have

_mi_m which records m (imputation number), _mi_id which records an arbitrarily coded

observation-identification variable that allows to link observations across imputations (not to be

used as a regular ID because mi program can arbitrarily change those numbers). . It is 1 and 2 in

m=0, and then repeats in m=1 and m=2.

26

Style mlong
 +---+

 | a b c _mi_miss _mi_m _mi_id |

 |---|

 1. | 1 2 3 0 0 1 |

 2. | 4 . . 1 0 2 |

 3. | 4 4.5 8.5 . 1 2 |

 4. | 4 5.5 9.5 . 2 2 |

 +---+

Style flongsep

 In this style, the data from m=0, m=1 and m=2 are stored in three separate datases, e.g.

 . mi convert flongsep example, clear

 (files example.dta _1_example.dta _2_example.dta created)

Here, example.dta looks like this:
 +-------------------------------+

 | a b c _mi_miss _mi_id |

 |-------------------------------|

 1. | 1 2 3 0 1 |

 2. | 4 . . 1 2 |

 +-------------------------------+

_1_example.dta looks like this:

 +------------------------+

 | a b c _mi_id |

 |------------------------|

 1. | 1 2 3 1 |

 2. | 4 4.5 8.5 2 |

 +------------------------+

_2_example.dta:
 +------------------------+
 | a b c _mi_id |

 |------------------------|

 1. | 1 2 3 1 |

 2. | 4 5.5 9.5 2 |

 +------------------------+

Note that to change style, we used mi convert; another example:

 mi convert flong, clear

Let’s set the style and register variables; I prefer flong so I will use that:
. mi set flong

. mi register imputed public pct_esl morale sciencem femalem blackm latinom asianm

native

. mi register regular spokenm paredm

. mi impute chained (logit) public (ologit) morale (reg) pct_esl sciencem femalem

blackm latinom asianm native = spokenm paredm, add(5) augment

Conditional models:

 femalem: regress femalem blackm latinom asianm nativem i.public i.morale

sciencem pct_esl spokenm paredm

 blackm: regress blackm femalem latinom asianm nativem i.public i.morale

sciencem pct_esl spokenm paredm

 latinom: regress latinom femalem blackm asianm nativem i.public i.morale

sciencem pct_esl spokenm paredm

27

 asianm: regress asianm femalem blackm latinom nativem i.public i.morale

sciencem pct_esl spokenm paredm

 nativem: regress nativem femalem blackm latinom asianm i.public i.morale

sciencem pct_esl spokenm paredm

 public: logit public femalem blackm latinom asianm nativem i.morale

sciencem pct_esl spokenm paredm , augment

 morale: ologit morale femalem blackm latinom asianm nativem i.public

sciencem pct_esl spokenm paredm , augment

 sciencem: regress sciencem femalem blackm latinom asianm nativem i.public

i.morale pct_esl spokenm paredm

 pct_esl: regress pct_esl femalem blackm latinom asianm nativem i.public

i.morale sciencem spokenm paredm

Performing chained iterations ...

Multivariate imputation Imputations = 5

Chained equations added = 5

Imputed: m=1 through m=5 updated = 0

Initialization: monotone Iterations = 50

 burn-in = 10

 public: logistic regression

 morale: ordered logistic regression

 pct_esl: linear regression

 sciencem: linear regression

 femalem: linear regression

 blackm: linear regression

 latinom: linear regression

 asianm: linear regression

 nativem: linear regression

--

 | Observations per m

 |--

 Variable | Complete Incomplete Imputed | Total

-------------------+-----------------------------------+----------

 public | 996 17 17 | 1013

 morale | 994 19 19 | 1013

 pct_esl | 991 22 22 | 1013

 sciencem | 992 21 21 | 1013

 femalem | 1011 2 2 | 1013

 blackm | 1010 3 3 | 1013

 latinom | 1010 3 3 | 1013

 asianm | 1010 3 3 | 1013

 nativem | 1010 3 3 | 1013

--

(complete + incomplete = total; imputed is the minimum across m

 of the number of filled-in observations.)

Note that if any of your variables that are used but not imputed (variables after =) should be sets

of dummies, use i. before these variables’ names in the command.

Some helpful options of mi impute include:

dryrun – same as for ice; specify equations but not run the actual imputation

rseed(#) – specify random-number seed in order to create imputations in a replicable fashion

by(varlist) – impute separately on each group formed by varlist

conditional(if condition)

include – specify what to include in the imputation equation

omit – to omit certain variables from some equations

