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SOCY7708: Hierarchical Linear Modeling 

Instructor: Natasha Sarkisian 

Class notes: Non-continuous Dependent Variables 

 

So far we’ve only dealt with continuous dependent variables, but HLM allows us to estimate 

models when the dependent variables are categorical.  Your dependent variable can be 

dichotomous (0/1), categorical with multiple unordered categories, ordinal, or count variable.  In 

such cases, linear models are inappropriate as there are no restrictions on the predicted values of 

level-1 outcome, the level-1 random effect (i.e. level 1 residual) cannot be normally distributed, 

and cannot have homogenous variance (the variance depends on the predicted value).  Therefore, 

we need to use HGLM models for such variables. Like in non-hierarchical analysis, this is 

accomplished by specifying a link function that transforms the dependent variable so that the 

level-1 predicted values are constrained to be within a specific interval. Specifically, we use logit 

models for dichotomous variables, multinomial logit for categorical with unordered categories, 

ordered logit for ordinal variables, and Poisson models for count variables.  

 

The following is an example of analysis with a dichotomous dependent variable.  We’ll use data 

from thai.dta file on 7,516 sixth graders nested within 356 primary schools from a national 

survey of primary education in Thailand, conducted in 1988.  The dependent variable of interest 

is the probability that a child will repeat a grade during the primary years (REP1).  The level-1 

independent variables are whether a child attended pre-primary education (PPED) and child’s 

gender (MALE).  The level-2 variable is mean SES of school (MSESC).  Since the dependent 

variable is binary, we will use melogit command. Let’s do an unconditional model first:  
 

. melogit rep1 || schoolid: 

 

Mixed-effects logistic regression               Number of obs     =      7,516 

Group variable:        schoolid                 Number of groups  =        356 

                                                Obs per group: 

                                                              min =          2 

                                                              avg =       21.1 

                                                              max =         41 

 

Integration method: mvaghermite                 Integration pts.  =          7 

 

                                                Wald chi2(0)      =          . 

Log likelihood = -2768.6731                     Prob > chi2       =          . 

------------------------------------------------------------------------------ 

        rep1 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       _cons |  -2.233851   .0876057   -25.50   0.000    -2.405555   -2.062147 

-------------+---------------------------------------------------------------- 

schoolid     | 

   var(_cons)|   1.732841   .2144817                       1.35957    2.208594 

------------------------------------------------------------------------------ 

LR test vs. logistic model: chibar2(01) = 603.41      Prob >= chibar2 = 0.0000 

 

. estat icc 

 

Intraclass correlation 

------------------------------------------------------------------------------ 

                       Level |        ICC   Std. Err.     [95% Conf. Interval] 

-----------------------------+------------------------------------------------ 

                    schoolid |   .3450013     .02797       .292416    .4016749 

------------------------------------------------------------------------------ 
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Note that the variance component does not contain an estimate of level 1 variance. That is 

because in logistic regression models, it is not possible to estimate both the coefficients and the 

error variance; therefore, in all logistic regression models, the error variance is always fixed to 

the same number which is 2/3 = 3.29. That rule also applies to multilevel models, but only to 

their level 1 residuals. Knowing this means that we can calculate the intraclass correlation 

coefficient or the proportion of variance explained. For both, we can follow the procedures 

described on pp.224-227 of the Snijders and Bosker chapter on dichotomous outcomes. For 

instance, the ICC was calculated as: 

  
The model with level 1 and level2 that we’d like to try to estimate is: 
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Let’s start with level 1 variables:  
 

. melogit rep1 pped male || schoolid: pped male, cov(unstr) 

 

The model fails to converge; I suspect it’s the variance components so I look at those one by one: 
. melogit rep1 pped male || schoolid: pped, cov(unstr) 

 

Mixed-effects logistic regression               Number of obs     =      7,516 

Group variable:        schoolid                 Number of groups  =        356 

 

                                                Obs per group: 

                                                              min =          2 

                                                              avg =       21.1 

                                                              max =         41 

Integration method: mvaghermite                 Integration pts.  =          7 

 

                                                Wald chi2(2)      =      63.85 

Log likelihood =  -2720.987                     Prob > chi2       =     0.0000 

------------------------------------------------------------------------------ 

        rep1 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        pped |  -.5577893   .1446756    -3.86   0.000    -.8413483   -.2742303 

        male |   .5391314   .0763372     7.06   0.000     .3895132    .6887495 

       _cons |   -2.27575   .1163893   -19.55   0.000    -2.503868   -2.047631 

-------------+---------------------------------------------------------------- 

schoolid     | 

    var(pped)|   .0812087   .2653494                      .0001344    49.07981 

   var(_cons)|   1.886038   .3054017                      1.373148    2.590499 

-------------+---------------------------------------------------------------- 

schoolid     | 

    cov(pped,| 

       _cons)|  -.2396558   .2215629    -1.08   0.279    -.6739111    .1945996 

------------------------------------------------------------------------------ 
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LR test vs. logistic model: chi2(3) = 574.23              Prob > chi2 = 0.0000 

 

Note: LR test is conservative and provided only for reference. 

 

. est store pped_varies 

 

. melogit rep1 pped male || schoolid: male, cov(unstr) 

 

Mixed-effects logistic regression               Number of obs     =      7,516 

Group variable:        schoolid                 Number of groups  =        356 

 

                                                Obs per group: 

                                                              min =          2 

                                                              avg =       21.1 

                                                              max =         41 

 

Integration method: mvaghermite                 Integration pts.  =          7 

 

                                                Wald chi2(2)      =      56.83 

Log likelihood = -2720.1116                     Prob > chi2       =     0.0000 

------------------------------------------------------------------------------ 

        rep1 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        pped |  -.6408643   .1002516    -6.39   0.000    -.8373538   -.4443747 

        male |   .4495504   .1086671     4.14   0.000     .2365668     .662534 

       _cons |  -2.200042   .1134854   -19.39   0.000    -2.422469   -1.977615 

-------------+---------------------------------------------------------------- 

schoolid     | 

    var(male)|    .192939   .1597268                      .0380841    .9774554 

   var(_cons)|   1.554265   .2629583                      1.115615    2.165387 

-------------+---------------------------------------------------------------- 

schoolid     | 

    cov(male,| 

       _cons)|   .0913347   .1653605     0.55   0.581    -.2327659    .4154353 

------------------------------------------------------------------------------ 

LR test vs. logistic model: chi2(3) = 575.98              Prob > chi2 = 0.0000 

 

Note: LR test is conservative and provided only for reference. 

 

. est store male_varies 

 

. melogit rep1 pped male || schoolid: 

 

Mixed-effects logistic regression               Number of obs     =      7,516 

Group variable:        schoolid                 Number of groups  =        356 

 

                                                Obs per group: 

                                                              min =          2 

                                                              avg =       21.1 

                                                              max =         41 

 

Integration method: mvaghermite                 Integration pts.  =          7 

 

                                                Wald chi2(2)      =      91.13 

Log likelihood = -2721.7147                     Prob > chi2       =     0.0000 

------------------------------------------------------------------------------ 

        rep1 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        pped |  -.6419783   .0995511    -6.45   0.000    -.8370949   -.4468616 

        male |   .5362797   .0759943     7.06   0.000     .3873337    .6852258 

       _cons |   -2.23709   .1066484   -20.98   0.000    -2.446117   -2.028063 

-------------+---------------------------------------------------------------- 

schoolid     | 
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   var(_cons)|   1.703816   .2126685                      1.334064    2.176049 

------------------------------------------------------------------------------ 

LR test vs. logistic model: chibar2(01) = 572.78      Prob >= chibar2 = 0.0000 

 

. est store novary 

 

. est stats pped_varies male_varies novary 

 

Akaike's information criterion and Bayesian information criterion 

 

----------------------------------------------------------------------------- 

       Model |          N   ll(null)  ll(model)      df        AIC        BIC 

-------------+--------------------------------------------------------------- 

 pped_varies |      7,516          .  -2720.987       6   5453.974   5495.523 

 male_varies |      7,516          .  -2720.112       6   5452.223   5493.772 

      novary |      7,516          .  -2721.715       4   5451.429   5479.129 

----------------------------------------------------------------------------- 

Note: BIC uses N = number of observations. See [R] BIC note. 

 

We can see that the log likelihoods are very close to each other (we could check with formal LR 

test but the outcome is predictable here), and BIC values clearly indicate that neither random 

slope is helpful. Therefor, our final model won’t include random slopes. We will now add level 2 

variable without cross-level interactions (I mean center MSESC first): 

 
. egen tag=tag(schoolid) 

 

. sum msesc if tag==1 

 

    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

       msesc |        356    .0078371    .3806623       -.77       1.49 

 

. gen msescm= msesc-r(mean) 

 
. melogit rep1 pped male msescm || schoolid: 

 

Mixed-effects logistic regression               Number of obs     =      7,516 

Group variable:        schoolid                 Number of groups  =        356 

 

                                                Obs per group: 

                                                              min =          2 

                                                              avg =       21.1 

                                                              max =         41 

 

Integration method: mvaghermite                 Integration pts.  =          7 

 

                                                Wald chi2(3)      =      92.83 

Log likelihood = -2720.7865                     Prob > chi2       =     0.0000 

------------------------------------------------------------------------------ 

        rep1 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        pped |  -.6270442    .100192    -6.26   0.000    -.8234169   -.4306716 

        male |   .5353579   .0759897     7.05   0.000     .3864209    .6842949 

      msescm |  -.2954074   .2163732    -1.37   0.172     -.719491    .1286762 

       _cons |  -2.244334   .1066351   -21.05   0.000    -2.453335   -2.035333 

-------------+---------------------------------------------------------------- 

schoolid     | 

   var(_cons)|   1.692804   .2115158                      1.325102    2.162541 

------------------------------------------------------------------------------ 

LR test vs. logistic model: chibar2(01) = 567.89      Prob >= chibar2 = 0.0000 
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I also tested cross-level interactions just in case, but, not surprisingly, they were not significant.  

 

To calculate the proportion of variance explained, we use the following formula:  

 
Note that in addition to the level 2 intercept variance 0  and level 1 variance 2

R = 3.29, we 

need to know the variance of fitted values 2
F. That refers to the variance of linear predictions, 

which are the values that results if we multiply our coefficients by our variable values and add up 

these products. That is, we are talking about the predicted values of logits. To obtain the variance 

of fitted values, we can use predict command, predict fitted values (using xb option), and get 

their variance. Note that such R squared values are typically lower than values we are used to 

with OLS because 2
R  is a fixed number.  

 

. predict xb, xb 

 

. sum xb, det 

 

            Linear prediction, fixed portion only 

------------------------------------------------------------- 

      Percentiles      Smallest 

 1%    -3.093573      -3.253093 

 5%    -2.993134      -3.253093 

10%    -2.919282      -3.253093       Obs               7,516 

25%      -2.6416      -3.253093       Sum of Wgt.       7,516 

 

50%    -2.283376                      Mean          -2.285421 

                        Largest       Std. Dev.      .4486351 

75%    -1.935602      -1.508738 

90%    -1.632809      -1.508738       Variance       .2012735 

95%    -1.594406      -1.508738       Skewness      -.0061893 

99%    -1.538279      -1.479198       Kurtosis       2.036111 

 

. di .2012735/(1.692804 + .2012735 + 3.29) 

.03882533 

 

That’s our pseudo-R square for the model. .039.  

 

Interpreting fixed effects 

 

The interpretation of the fixed effects is very similar to the interpretation of the results of logistic 

regression—but be careful as we now have variables on multiple levels and can potentially have 

interactions across levels.  

 

Interpreting coefficients themselves allows us to discuss the direction and significance of effects, 

but not their size. To talk about the size, we use odds ratios. Odds are ratios of two probabilities 

– probability of a positive outcome and a probability of a negative outcome (e.g. probability of 

voting divided by a probability of not voting).  But since probabilities vary depending on values 

of X, such a ratio varies as well. What remains constant is the ratio of such odds – e.g. odds of 

repeating a grade for male child divided by odds of repeating a grade for a female child will be 

the same number regardless of the values of other variables on the model.  Similarly, the odds 

ratio for age can be a ratio of the odds of repeating a grade for someone who is 12 y.o. to the 
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odds of an 11 y.o. child, or of a 17 y.o. to a 16 y.o. childs’s odds – these will be the same 

regardless of what age values you pick, as long as they are one year apart. 

 

Odds ratios are exponentiated logistic regression coefficients. They are sometimes called factor 

coefficients, because they are multiplicative coefficients.  Odds ratios are equal to 1 if there is no 

effect, smaller than 1 if the effect is negative and larger than 1 if it is positive.  Let’s obtain them: 

 
. melogit rep1 pped male msescm || schoolid:, or 

 

Mixed-effects logistic regression               Number of obs     =      7,516 

Group variable:        schoolid                 Number of groups  =        356 

 

                                                Obs per group: 

                                                              min =          2 

                                                              avg =       21.1 

                                                              max =         41 

 

Integration method: mvaghermite                 Integration pts.  =          7 

 

                                                Wald chi2(3)      =      92.83 

Log likelihood = -2720.7865                     Prob > chi2       =     0.0000 

------------------------------------------------------------------------------ 

        rep1 | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        pped |   .5341683   .0535194    -6.26   0.000     .4389293    .6500723 

        male |   1.708059   .1297948     7.05   0.000     1.471704    1.982373 

      msescm |   .7442283    .161031    -1.37   0.172     .4870001    1.137322 

       _cons |   .1059981   .0113031   -21.05   0.000     .0860063    .1306369 

-------------+---------------------------------------------------------------- 

schoolid     | 

   var(_cons)|   1.692804   .2115158                      1.325102    2.162541 

------------------------------------------------------------------------------ 

Note: Estimates are transformed only in the first equation. 

Note: _cons estimates baseline odds (conditional on zero random effects). 

LR test vs. logistic model: chibar2(01) = 567.89      Prob >= chibar2 = 0.0000 

 

So for example, the odds ratio for 1.7 for males indicates that the odds of repeating a grade for 

males are 1.7 times higher than for females –or we can say 70% higher. And the odds ratio of 

0.74 for MSESC indicates that each additional unit increase in mean SES of school is associated 

in a 26% decrease in a student’s odds of repeating a grade (albeit non-significant). To get percent 

change, we subtract 1 from the odds ratio, and then multiply the result by 100. 

 

Beware: if you would like to know what the increase would be per, say, 10 units increase in the 

independent variable – e.g. 10 years of age or education, you cannot simply multiple the odds 

ratio by 10! The coefficient, in fact, would be odds ratio to the power of 10.  Or alternatively, 

you could take the regular logit coefficient, multiply it by 10 and then exponentiate it.  

 

In addition, since odds ratios are multiplicative coefficients, when you want to interpret, for 

example, an interaction term, you would have to multiply rather than add the odds ratio numbers. 

Alternatively, you can add the numbers presented in the coefficient column and then 

exponentiate the result.  

 

In addition to using odds ratios, we can use predicted probabilities (P) to interpret our results.  
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It is more interesting for interpretation purposes to calculate predicted probabilities for some 

hypothetical, strategically selected cases. For instance, if we want to calculate the predicted 

probabilities for males and females and for those who did and did not attend pre-primary 

education (and who are in a school with average SES – school SES at mean), we calculate: 
 

. margins, at(male=(0 1) pped=(0 1)) atmeans 

 

Adjusted predictions                            Number of obs     =      7,516 

Model VCE    : OIM 

 

Expression   : Marginal predicted mean, predict() 

 

1._at        : pped            =           0 

               male            =           0 

               msescm          =     .001837 (mean) 

 

2._at        : pped            =           0 

               male            =           1 

               msescm          =     .001837 (mean) 

 

3._at        : pped            =           1 

               male            =           0 

               msescm          =     .001837 (mean) 

 

4._at        : pped            =           1 

               male            =           1 

               msescm          =     .001837 (mean) 

 

------------------------------------------------------------------------------ 

             |            Delta-method 

             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         _at | 

          1  |   .1488415   .0109228    13.63   0.000     .1274331    .1702499 

          2  |   .2122994   .0131279    16.17   0.000     .1865693    .2380296 

          3  |   .0936595   .0083003    11.28   0.000     .0773912    .1099278 

          4  |   .1395175   .0107515    12.98   0.000     .1184448    .1605901 

------------------------------------------------------------------------------ 

 

Such strategically calculated predicted probabilities are very useful for a more intuitive 

presentation of results. Note, however, that the differences between probabilities are not constant 

for a given factor – e.g., the gender difference here is not the same for those who attended and 

did not attend preprimary education (PPED=1 vs 0). To better understand interpretation of 

coefficients in all of these model, you could review my SOCY7704 notes for each of these 

topics.  

 

Interactions 

 

Note that interactions as a method to compare two or more groups can be problematic in logit 

models because the coefficients are scaled according to the differences in residual dispersion. So 

it is not as appropriate to rely on the significance test of the interaction term to establish whether 

some process differs by group. This is especially problematic for HLM as it heavily relies on the 

use of cross-level interactions. The best approach to establish whether the two groups do differ is 

to examine differences in predicted probabilities. When doing that, you would have to decide 

which values to assign to the rest of the variables in your model. For more detail on these 

comparisons, see: 
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Long, J. Scott and Sarah A. Mustillo. 2021. “Using Predictions and Marginal Effects to Compare 

Groups in Regression Models for Binary Outcomes.” Sociological Methods & Research 50 (3): 

1284-1320.  

 
. melogit rep1 i.pped##c.msescm i.male##c.msescm || schoolid: 

 

Mixed-effects logistic regression               Number of obs     =      7,516 

Group variable:        schoolid                 Number of groups  =        356 

 

                                                Obs per group: 

                                                              min =          2 

                                                              avg =       21.1 

                                                              max =         41 

 

Integration method: mvaghermite                 Integration pts.  =          7 

 

                                                Wald chi2(5)      =      94.34 

Log likelihood = -2719.6352                     Prob > chi2       =     0.0000 

------------------------------------------------------------------------------ 

        rep1 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      1.pped |  -.6265808   .1006481    -6.23   0.000    -.8238475   -.4293141 

      msescm |   -.468646    .269038    -1.74   0.082    -.9959508    .0586588 

             | 

        pped#| 

    c.msescm | 

          1  |  -.0012548   .2610455    -0.00   0.996    -.5128946     .510385 

             | 

      1.male |   .5459253   .0764003     7.15   0.000     .3961834    .6956671 

             | 

        male#| 

    c.msescm | 

          1  |   .2988648   .1975823     1.51   0.130    -.0883894    .6861191 

             | 

       _cons |  -2.250515   .1071137   -21.01   0.000    -2.460454   -2.040576 

-------------+---------------------------------------------------------------- 

schoolid     | 

   var(_cons)|   1.691005   .2121482                      1.322379     2.16239 

------------------------------------------------------------------------------ 

LR test vs. logistic model: chibar2(01) = 560.27      Prob >= chibar2 = 0.0000 

 

. sum msesc 

 

    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

       msesc |      7,516     .009674    .3759242       -.77       1.49 

 

. global max=r(max) 

 

. global min=r(min) 

 

. global mean=r(mean) 

 

. margins, at(msesc=($max $mean $min) male=(0 1) pped=(0 1)) 

 

Adjusted predictions                            Number of obs     =      7,516 

Model VCE    : OIM 

 

Expression   : Marginal predicted mean, predict() 

 

1._at        : pped            =           0 

               msesc           =        1.49 
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               male            =           0 

 

2._at        : pped            =           0 

               msesc           =        1.49 

               male            =           1 

 

3._at        : pped            =           0 

               msesc           =     .009674 

               male            =           0 

 

4._at        : pped            =           0 

               msesc           =     .009674 

               male            =           1 

 

5._at        : pped            =           0 

               msesc           =        -.77 

               male            =           0 

 

6._at        : pped            =           0 

               msesc           =        -.77 

               male            =           1 

 

7._at        : pped            =           1 

               msesc           =        1.49 

               male            =           0 

 

8._at        : pped            =           1 

               msesc           =        1.49 

               male            =           1 

 

9._at        : pped            =           1 

               msesc           =     .009674 

               male            =           0 

 

10._at       : pped            =           1 

               msesc           =     .009674 

               male            =           1 

 

11._at       : pped            =           1 

               msesc           =        -.77 

               male            =           0 

 

12._at       : pped            =           1 

               msesc           =        -.77 

               male            =           1 

------------------------------------------------------------------------------ 

             |            Delta-method 

             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         _at | 

          1  |    .088422   .0292065     3.03   0.002     .0311783    .1456657 

          2  |   .1810887   .0478308     3.79   0.000     .0873421    .2748353 

          3  |   .1481178   .0109159    13.57   0.000      .126723    .1695127 

          4  |   .2128655   .0131584    16.18   0.000     .1870754    .2386556 

          5  |   .1896291   .0277656     6.83   0.000     .1352094    .2440488 

          6  |   .2309484   .0300885     7.68   0.000      .171976    .2899208 

          7  |   .0529285   .0195964     2.70   0.007     .0145203    .0913366 

          8  |   .1164426   .0358417     3.25   0.001     .0461941    .1866911 

          9  |   .0931805    .008324    11.19   0.000     .0768657    .1094954 

         10  |   .1399748   .0108341    12.92   0.000     .1187403    .1612093 

         11  |    .122897   .0232624     5.28   0.000     .0773034    .1684905 

         12  |   .1537191   .0265344     5.79   0.000     .1017127    .2057255 

------------------------------------------------------------------------------ 
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. margins, dydx(male) at(msesc=($min(.3)$max) pped=0) 

 

Conditional marginal effects                    Number of obs     =      7,516 

Model VCE    : OIM 

 

Expression   : Marginal predicted mean, predict() 

dy/dx w.r.t. : 1.male 

 

1._at        : pped            =           0 

               msesc           =        -.77 

 

2._at        : pped            =           0 

               msesc           =        -.47 

 

3._at        : pped            =           0 

               msesc           =        -.17 

 

4._at        : pped            =           0 

               msesc           =         .13 

 

5._at        : pped            =           0 

               msesc           =         .43 

 

6._at        : pped            =           0 

               msesc           =         .73 

 

7._at        : pped            =           0 

               msesc           =        1.03 

 

8._at        : pped            =           0 

               msesc           =        1.33 

 

------------------------------------------------------------------------------ 
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             |            Delta-method 

             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

0.male       |  (base outcome) 

-------------+---------------------------------------------------------------- 

1.male       | 

         _at | 

          1  |   .0413193   .0217315     1.90   0.057    -.0012736    .0839122 

          2  |   .0510788   .0147275     3.47   0.001     .0222134    .0799442 

          3  |   .0599054   .0099883     6.00   0.000     .0403288     .079482 

          4  |   .0678063   .0098567     6.88   0.000     .0484876    .0871251 

          5  |   .0747985   .0138159     5.41   0.000     .0477198    .1018772 

          6  |   .0809072   .0191838     4.22   0.000     .0433077    .1185067 

          7  |   .0861653   .0249034     3.46   0.001     .0373556     .134975 

          8  |    .090612   .0306991     2.95   0.003     .0304428    .1507812 

------------------------------------------------------------------------------ 

Note: dy/dx for factor levels is the discrete change from the base level. 

 

. marginsplot, x(msesc) plotop(msymbol(i)) recastci(rarea) ciopts(fintensity(5)) 

 

  Variables that uniquely identify margins: msesc 

 

 

 

 

Ordered Logit 

 

When the outcome variable is categorical but not binary – that is, either an ordinal variable or a 

nominal one with more than 2 categories—we can also use logit models, but need to modify 

them.   
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If your dependent variable has ordered categories (i.e. the order of categories is meaningful but 

the distances between them are arbitrary), you can use ordered logit. Here, we assume a latent 

dependent variable, and it is divided into intervals – those are categories we actually observe: 

 

 
Then, our regression model of latent Y on X is assumed to look like this (you can see how the 

categories are mapped onto the latent variable – they are not equal).  

 
 

This is one interpretation of ordered logit model.  Another one is that it combines a set of binary 

logits by constraining them to be the same equation.  We could estimate binary logit models for 

each category to predict probability of belonging to that group or any group below it.  We could 

then require all of these logits to have the same slopes and we could estimate them 

simultaneously – the result is the ordered logit model.  To understand why they have to be the 

same (this is called parallel slopes assumption), we can return to our latent Y model – the slope 

of the line is the same across all categories – for the entire span of the latent variable.  That is 

how this assumption looks when we examine probabilities: 
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We’ll use a subset of longitudinal data from the Health and Retirement Study 

(hrs_hours_reshaped.dta) and predict hours of work based on hours spent helping one’s parents 

as well as various controls. We will recode hours of work into 4 categories for this example. I 

will right away estimate a model with odds ratios.  
 

. recode  rworkhours80 (0=0) (1/30=1) (31/50=2) (51/80=3), gen(rworkhours4) 

(23290 differences between rworkhours80 and rworkhours4) 

 

. meologit rworkhours4 rpoorhealth  rmarried rtotalpar rsiblog hchildlg rallparhelptw 

female raedyrs age minority || hhidpn: rpoorhealth , or 

 

Mixed-effects ologit regression                 Number of obs     =     30,541 

Group variable:          hhidpn                 Number of groups  =      6,243 

 

                                                Obs per group: 

                                                              min =          1 

                                                              avg =        4.9 

                                                              max =          9 

 

Integration method: mvaghermite                 Integration pts.  =          7 

 

                                                Wald chi2(10)     =    2886.84 

Log likelihood = -29889.765                     Prob > chi2       =     0.0000 

---------------------------------------------------------------------------------- 

     rworkhours4 | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

     rpoorhealth |   .2024437   .0142883   -22.63   0.000     .1762897    .2324778 

        rmarried |   .7595365   .0495799    -4.21   0.000     .6683211    .8632014 

       rtotalpar |   2.472556   .0587662    38.09   0.000     2.360018     2.59046 

         rsiblog |   1.092916   .0567357     1.71   0.087     .9871859     1.20997 

        hchildlg |   .8388503    .046101    -3.20   0.001     .7531903    .9342524 

   rallparhelptw |   .9464933   .0038434   -13.54   0.000     .9389902    .9540563 

          female |   .2541045   .0169547   -20.53   0.000     .2229551    .2896058 

         raedyrs |   1.108991   .0129775     8.84   0.000     1.083845     1.13472 

             age |   .8665796   .0093365   -13.29   0.000     .8484722    .8850735 

        minority |   1.020861   .0821003     0.26   0.797     .8719888    1.195151 

-----------------+---------------------------------------------------------------- 

           /cut1 |  -7.457429    .642393                     -8.716496   -6.198362 

           /cut2 |  -6.453125   .6418843                     -7.711196   -5.195055 

           /cut3 |  -2.937608   .6407136                     -4.193384   -1.681833 

-----------------+---------------------------------------------------------------- 

hhidpn           | 

 var(rpoorhealth)|   2.840702   .3109701                      2.292161    3.520516 

       var(_cons)|   4.743435   .1555185                      4.448212    5.058252 

---------------------------------------------------------------------------------- 

Note: Estimates are transformed only in the first equation. 

LR test vs. ologit model: chi2(2) = 8925.32               Prob > chi2 = 0.0000 

 

Note: LR test is conservative and provided only for reference. 

 

Briefly, the odds ratios for ordered logit are cumulative odds of belonging to a certain category 

or lower versus belonging to one of the higher categories. For example, if our dependent variable 

is the level of agreement with some statement and the categories are agree=3, not sure=2, and 

disagree=1, and if the odds ratio for gender as a predictor of that agreement is 2.00, we can say 

that the odds of disagreeing rather than agreeing or being not sure are 2 times higher for women 

than for men. Similarly, the odds of disagreeing or being not sure are also twice as high for 

women than for men.  
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What this means is that ologit assumes that these two odds ratios are essentially the same and 

thus uses the average. That is called the parallel slopes assumption. So we are assuming these 

two odds ratios are the same – if they differ significantly, the assumption is violated. 

 

Stata does not provide diagnostic tools for panel data for testing the parallel slopes assumption, 

so in order to obtain a rough test, you might want to run your model without taking panel nature 

of the data into account (using regular ologit command) and test that assumption that way, even 

though such a test will be approximate. Another way to do so would be to create the 

corresponding dichotomies (here, rworkhours4=1 vs 2 3 4, rworkhours4= 1 2 vs 3 4, and 

rworkhours4=1 2 3 vs 4) and estimate models separately for each dichotomy using melogit – we 

can then examine whether odds ratios indeed look similar in such models (that’s what parallel 

slopes assumption presumes).  

 

To interpret coefficients here, for example, if a respondent reports poor health, their odds of 

working full time or overtime are almost 80% lower.  

 

Multinomial Logit 

 

We use multinomial logit models when we have multiple categories but cannot order them (or 

we can, but the parallel regression assumption does not hold).  Here the order of categories is 

unimportant.  Multinomial logit model is equivalent to simultaneous estimation of multiple logits 

where each of the categories is compared to one selected so-called base category.  But if we 

would estimate them separately, we would lose information, as each logit would be estimated on 

a different sample (selected category plus base category, with all other categories omitted from 

analyses).  To avoid that, we use multinomial logit.  

 

Multinomial logit does not assume parallel slopes – so if we estimate it for ordinal level variable 

and then plot cumulative probabilities, we would see something like this (note the variation in 

slope!): 
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The best way to estimate a random effects multinomial logit in Stata is using SEM module, and 

specifically gsem command with mlogit option. You can either specify a version estimating a 

single random effect or a separate random effect for each equation (we have m-1 equations in 

multinomial logit with m alternatives). The second option is less restrictive and usually 

preferred. Here is an example using rworkhours4 we generated above (its values are 0 -3). 

We can either use model builder to build the following GSEM model, or enter a command: 

 
 

. gsem (1.rworkhours4 <- rpoorhealth rmarried rtotalpar rsiblog hchildlg rallparhelptw 

female raedyrs age minority M1[hhidpn])  (2.rworkhours4 <- rpoorhealth rmarried 

rtotalpar rsiblog hchildlg rallparhelptw female raedyrs age minority M2[hhidpn]) 

(3.rworkhours4 <- rpoorhealth rmarried rtotalpar rsiblog hchildlg rallparhelptw female 

raedyrs age minority M3[hhidpn]), mlogit 

 

Generalized structural equation model             Number of obs   =      30541 

Log likelihood = -27850.963 

 

 ( 1)  [1.rworkhours4]M1[hhidpn] = 1 

 ( 2)  [2.rworkhours4]M2[hhidpn] = 1 

 ( 3)  [3.rworkhours4]M3[hhidpn] = 1 

---------------------------------------------------------------------------------- 

                 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

0.rworkhours4    |  (base outcome) 

-----------------+---------------------------------------------------------------- 

1.rworkhours4 <- | 

     rpoorhealth |  -1.277058   .0828982   -15.41   0.000    -1.439536   -1.114581 

        rmarried |  -.0611107   .1034527    -0.59   0.555    -.2638743     .141653 

       rtotalpar |   .7099914   .0435582    16.30   0.000     .6246189    .7953638 

         rsiblog |   .1661102    .077469     2.14   0.032     .0142738    .3179466 

        hchildlg |   -.096628   .0827913    -1.17   0.243    -.2588961      .06564 

   rallparhelptw |  -.0141175   .0064669    -2.18   0.029    -.0267924   -.0014426 

          female |  -.1735534   .0970918    -1.79   0.074    -.3638498     .016743 

         raedyrs |   .1371333   .0171756     7.98   0.000     .1034697    .1707969 
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             age |  -.0867121   .0155403    -5.58   0.000    -.1171705   -.0562537 

        minority |  -.0228635    .116838    -0.20   0.845    -.2518618    .2061348 

                 | 

      M1[hhidpn] |          1  (constrained) 

                 | 

           _cons |   .9628375   .9322679     1.03   0.302     -.864374    2.790049 

-----------------+---------------------------------------------------------------- 

2.rworkhours4 <- | 

     rpoorhealth |  -1.750017   .0704374   -24.85   0.000    -1.888072   -1.611963 

        rmarried |  -.4516769   .0962687    -4.69   0.000    -.6403599   -.2629938 

       rtotalpar |   1.442584   .0412238    34.99   0.000     1.361786    1.523381 

         rsiblog |   .1445202   .0763168     1.89   0.058    -.0050579    .2940982 

        hchildlg |  -.3232379    .080663    -4.01   0.000    -.4813346   -.1651413 

   rallparhelptw |  -.0809335   .0061454   -13.17   0.000    -.0929784   -.0688887 

          female |  -1.543764   .1004039   -15.38   0.000    -1.740552   -1.346976 

         raedyrs |    .130158    .017173     7.58   0.000     .0964996    .1638165 

             age |  -.2034751   .0160609   -12.67   0.000    -.2349538   -.1719963 

        minority |   .1211653   .1181552     1.03   0.305    -.1104146    .3527453 

                 | 

      M2[hhidpn] |          1  (constrained) 

                 | 

           _cons |   9.600093   .9520152    10.08   0.000     7.734177    11.46601 

-----------------+---------------------------------------------------------------- 

3.rworkhours4 <- | 

     rpoorhealth |  -1.916659   .1124895   -17.04   0.000    -2.137134   -1.696184 

        rmarried |  -.5334537   .1407739    -3.79   0.000    -.8093655   -.2575419 

       rtotalpar |   1.748915   .0562372    31.10   0.000     1.638692    1.859137 

         rsiblog |   .2218076   .1072693     2.07   0.039     .0115636    .4320515 

        hchildlg |  -.2066806   .1144466    -1.81   0.071    -.4309919    .0176307 

   rallparhelptw |  -.1073193   .0103503   -10.37   0.000    -.1276055   -.0870331 

          female |  -2.875229   .1459855   -19.70   0.000    -3.161355   -2.589102 

         raedyrs |   .2372999   .0241533     9.82   0.000     .1899602    .2846395 

             age |  -.2478874   .0225544   -10.99   0.000    -.2920931   -.2036816 

        minority |  -.0932506    .166257    -0.56   0.575    -.4191083    .2326072 

                 | 

      M3[hhidpn] |          1  (constrained) 

                 | 

           _cons |   8.004163   1.330828     6.01   0.000     5.395788    10.61254 

-----------------+---------------------------------------------------------------- 

  var(M1[hhidpn])|   7.277483   .3634233                      6.598935    8.025803 

  var(M2[hhidpn])|   10.11641   .4346091                      9.299468    11.00512 

  var(M3[hhidpn])|   16.62133   .7747086                      15.17022    18.21125 

-----------------+---------------------------------------------------------------- 

  cov(M2[hhidpn],| 

      M1[hhidpn])|   5.774199    .324637    17.79   0.000     5.137922    6.410476 

  cov(M3[hhidpn],| 

      M1[hhidpn])|   6.872237     .41161    16.70   0.000     6.065496    7.678978 

  cov(M3[hhidpn],| 

      M2[hhidpn])|   10.77613     .50847    21.19   0.000     9.779549    11.77272 

---------------------------------------------------------------------------------- 
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You would need to exponentiate coefficients to get odds ratios. Note that variables predict the 

membership in each group as compared to membership in the omitted group (rworkgroup4=0), 

so you can interpret odds ratios as the effect of a given predictor on the odds of being in a given 

group vs in the omitted group. 
 

. est store gsem 

 

. est table gsem, eform star b(%4.3f) 

 

----------------------------- 

    Variable |     gsem       

-------------+--------------- 

0b.rworkho~4 | 

       _cons | (omitted)      

-------------+--------------- 

1.rworkhou~4 | 

 rpoorhealth |     0.279***   

    rmarried |     0.941      

   rtotalpar |     2.034***   

     rsiblog |     1.181*     

    hchildlg |     0.908      

rallparhel~w |     0.986*     

      female |     0.841      
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     raedyrs |     1.147***   

         age |     0.917***   

    minority |     0.977      

             | 

  M1[hhidpn] |     2.718      

             | 

       _cons |     2.619      

-------------+--------------- 

2.rworkhou~4 | 

 rpoorhealth |     0.174***   

    rmarried |     0.637***   

   rtotalpar |     4.232***   

     rsiblog |     1.155      

    hchildlg |     0.724***   

rallparhel~w |     0.922***   

      female |     0.214***   

     raedyrs |     1.139***   

         age |     0.816***   

    minority |     1.129      

             | 

  M2[hhidpn] |     2.718      

             | 

       _cons |   1.5e+04***   

-------------+--------------- 

3.rworkhou~4 | 

 rpoorhealth |     0.147***   

    rmarried |     0.587***   

   rtotalpar |     5.748***   

     rsiblog |     1.248*     

    hchildlg |     0.813      

rallparhel~w |     0.898***   

      female |     0.056***   

     raedyrs |     1.268***   

         age |     0.780***   

    minority |     0.911      

             | 

  M3[hhidpn] |     2.718      

             | 

       _cons |  2993.395***   

-------------+--------------- 

        var( | 

  M1[hhidpn])|  1447.340***   

        var( | 

  M2[hhidpn])|   2.5e+04***   

        var( | 

  M3[hhidpn])|   1.7e+07***   

        cov( | 

  M1[hhidpn],| 

  M2[hhidpn])|   321.886***   

        cov( | 

  M1[hhidpn],| 

  M3[hhidpn])|   965.105***   

        cov( | 

  M2[hhidpn],| 

  M3[hhidpn])|   4.8e+04***   

----------------------------- 

legend: * p<0.05; ** p<0.01; *** p<0.001 

 

So for example, the odds of working part time rather than not working are 72.1% lower for those 

in poor health than for those in good health, while the odds of working full time rather than not 
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working are 82.6% lower and the odds of working overtime rather than not working are 85.3% 

lower for the same health comparison.  
  

To further complicate this model and allow for random slopes, you need to introduce even more 

latent variables with hhidpn in them and have these variables interact with those predictors for 

which you want to have random slopes. In terms of syntax, it looks like this: 
 

gsem (1.rworkhours4 <- rpoorhealth rmarried rtotalpar rsiblog hchildlg rallparhelptw 

female raedyrs age minority M1[hhidpn] 1.rpoorhealth#M2[hhidpn])  (2.rworkhours4 <- 

rpoorhealth rmarried rtotalpar rsiblog hchildlg rallparhelptw female raedyrs age 

minority M3[hhidpn] 1.rpoorhealth#M4[hhidpn]) (3.rworkhours4 <- rpoorhealth rmarried 

rtotalpar rsiblog hchildlg rallparhelptw female raedyrs age minority M5[hhidpn] 

1.rpoorhealth#M6[hhidpn]), mlogit 

 

For a simpler case, a diagram would look like this: 

 

 
 

These kinds of models tend to estimate very slowly, and you may need to deal with convergence 

issues – see intro 12 at https://www.stata.com/manuals/sem.pdf 

 

Count data models 

 

Count variables are often treated as though they are continuous, and regular regression is used, 

but it can result in inefficient, inconsistent, and biased estimates.  Need to use models that are 

developed specifically for count data.  Poisson model is the most basic of them.   

 

Characteristics of Poisson distribution:  

https://www.stata.com/manuals/sem.pdf
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1. E(y) =  

2. The variance equals the mean: Var(y)=E(y)=   -- equidispersion.  In practice, the variance is 

often larger than : this is called overdispersion.  The main reason for overdispersion is 

heterogeneity – if there are different groups within data that have different means and all of them 

are actually equal to their variances, when you put all of these groups together, the resulting 

combination will have variance larger than the mean.  Therefore, we need to control for all those 

sources of heterogeneity.  Thus, when using Poisson regression, we need to ensure that the 

conditional variance equals to the mean – that is Var(y|X)=E(y|X). 

3.  As  increases, the probability of zeros decreases.  But for many count variables, there are 

more observed zeros than would be predicted from Poisson distribution  

4. As  increases, the Poisson distribution approximates normal. 

5. The assumption of independence of events – past outcomes don’t affect future outcomes. 

 

Poisson distributions: 

 
 

Luckily, we can estimate a mixed effects Poisson model or negative binomial model. Let’s 

examine an example of mixed Poisson model (there is also a corresponding negative binomial 

regression command, menbreg): 

 
. mepoisson  rworkhours80 rpoorhealth  rmarried rtotalpar rsiblog hchildlg 

rallparhelptw female raedyrs age minority || hhidpn: 

 

Mixed-effects Poisson regression                Number of obs      =     30541 

Group variable: hhidpn                          Number of groups   =      6243 

 

                                                Obs per group: min =         1 

                                                               avg =       4.9 

                                                               max =         9 

 

Integration points =   7                        Wald chi2(10)      =  30723.86 
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Log likelihood = -237592.87                     Prob > chi2        =    0.0000 

 

------------------------------------------------------------------------------ 

rworkhours80 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

 rpoorhealth |   -.317193   .0052424   -60.50   0.000     -.327468   -.3069181 

    rmarried |  -.0465037   .0082793    -5.62   0.000    -.0627308   -.0302767 

   rtotalpar |   .3166688   .0022498   140.75   0.000     .3122593    .3210784 

     rsiblog |   .1548763   .0113293    13.67   0.000     .1326713    .1770813 

    hchildlg |  -.1326281    .010343   -12.82   0.000    -.1529001   -.1123561 

rallparhel~w |  -.0194976   .0004307   -45.27   0.000    -.0203418   -.0186534 

      female |  -1.088872   .0594299   -18.32   0.000    -1.205353    -.972392 

     raedyrs |   .1293615    .009998    12.94   0.000     .1097657    .1489573 

         age |  -.1223611   .0096613   -12.67   0.000     -.141297   -.1034253 

    minority |  -.1271817   .0701653    -1.81   0.070    -.2647031    .0103396 

       _cons |   7.385015   .5605793    13.17   0.000       6.2863    8.483731 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval] 

-----------------------------+------------------------------------------------ 

hhidpn: Identity             | 

                   sd(_cons) |   2.247979   .0274216      2.194871    2.302372 

------------------------------------------------------------------------------ 

LR test vs. Poisson regression:  chibar2(01) =  3.9e+05 Prob>=chibar2 = 0.0000 

 

With regular coefficients presented here, we can interpret sign and significance, but to interpret 

the size, we exponentiate the coefficients – these are called incidence rate ratios. They are also 

multiplicative coefficients, like odds ratios, and can be interpreted as percent change in the 

number of events.  
 

. mepoisson  rworkhours80 rpoorhealth  rmarried rtotalpar rsiblog hchildlg 

rallparhelptw female raedyrs age minority || hhidpn:, irr 

 

Mixed-effects Poisson regression                Number of obs     =     30,541 

Group variable:          hhidpn                 Number of groups  =      6,243 

 

                                                Obs per group: 

                                                              min =          1 

                                                              avg =        4.9 

                                                              max =          9 

 

Integration method: mvaghermite                 Integration pts.  =          7 

 

                                                Wald chi2(10)     =   30835.46 

Log likelihood =  -237571.3                     Prob > chi2       =     0.0000 

------------------------------------------------------------------------------ 

rworkhours80 |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

 rpoorhealth |   .7282366   .0038166   -60.51   0.000     .7207944    .7357557 

    rmarried |   .9545705   .0078981    -5.62   0.000     .9392154    .9701767 

   rtotalpar |   1.372556   .0030877   140.77   0.000     1.366517    1.378621 

     rsiblog |    1.16752   .0131903    13.71   0.000     1.141952    1.193661 

    hchildlg |   .8757708   .0090403   -12.85   0.000     .8582302    .8936699 

rallparhel~w |   .9806913   .0004224   -45.27   0.000     .9798638    .9815195 

      female |   .3359979   .0189861   -19.30   0.000     .3007725    .3753487 

     raedyrs |   1.138186   .0107564    13.70   0.000     1.117298    1.159464 

         age |   .8847575   .0080896   -13.39   0.000     .8690434    .9007556 

    minority |   .8809494   .0585982    -1.91   0.057     .7732706    1.003623 

       _cons |   1610.439   855.6806    13.90   0.000      568.424    4562.642 

-------------+---------------------------------------------------------------- 

hhidpn       | 
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   var(_cons)|   5.119811   .1233827                      4.883608    5.367439 

------------------------------------------------------------------------------ 

Note: Estimates are transformed only in the first equation. 

Note: _cons estimates baseline incidence rate (conditional on zero random 

      effects). 

LR test vs. Poisson model: chibar2(01) = 3.9e+05      Prob >= chibar2 = 0.0000 

 

So for example, if the respondent is currently married, they work 4.5% fewer hours than if they 

are not married. Each extra year of education increases the number of hours worked by 14%.  

 

In practice, Poisson regression model rarely fits due to overdispersion.  One key process that 

often creates overdispersion is known as contagion – violation of the assumption of the 

independence of events.  This assumption is often unrealistic; e.g. if you have your first child, 

that increases your chances of having your second.  

 

To better model overdispersion from this and other sources, we can use negative binomial model.  

It allows taking into account unobserved heterogeneity. To do so, it introduces an additional 

parameter – alpha, known as the dispersion parameter.  Increasing alpha increases the 

conditional variance of our count variable.  If alpha is zero, the model becomes regular Poisson 

model.   
 

. menbreg  rworkhours80 rpoorhealth  rmarried rtotalpar rsiblog hchildlg rallparhelptw 

female raedyrs age minority || hhidpn:, irr 

 

Mixed-effects nbinomial regression              Number of obs     =     30,541 

Overdispersion:            mean 

Group variable:          hhidpn                 Number of groups  =      6,243 

 

                                                Obs per group: 

                                                              min =          1 

                                                              avg =        4.9 

                                                              max =          9 

 

Integration method: mvaghermite                 Integration pts.  =          7 

 

                                                Wald chi2(10)     =    2400.45 

Log likelihood = -110234.72                     Prob > chi2       =     0.0000 

------------------------------------------------------------------------------ 

rworkhours80 |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

 rpoorhealth |   .4204695   .0156794   -23.23   0.000     .3908346    .4523515 

    rmarried |   .8480047   .0445282    -3.14   0.002     .7650718    .9399274 

   rtotalpar |   1.671643   .0306495    28.02   0.000     1.612638    1.732808 

     rsiblog |   1.124322   .0469158     2.81   0.005     1.036028     1.22014 

    hchildlg |   .8842482   .0392321    -2.77   0.006     .8106031    .9645841 

rallparhel~w |   .9687546   .0030539   -10.07   0.000     .9627874    .9747587 

      female |   .3541711    .019064   -19.28   0.000     .3187098    .3935779 

     raedyrs |   1.106181   .0103088    10.83   0.000     1.086159    1.126571 

         age |   .8974593   .0078051   -12.44   0.000     .8822911    .9128882 

    minority |   1.002555   .0645823     0.04   0.968     .8836405    1.137472 

       _cons |   1431.585   739.6125    14.07   0.000       520.06    3940.769 

-------------+---------------------------------------------------------------- 

    /lnalpha |   .8295796   .0117374                      .8065748    .8525844 

-------------+---------------------------------------------------------------- 

hhidpn       | 

   var(_cons)|   3.850327   .1192165                      3.623615    4.091222 

------------------------------------------------------------------------------ 

Note: Estimates are transformed only in the first equation. 
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Note: _cons estimates baseline incidence rate (conditional on zero random 

      effects). 

LR test vs. nbinomial model: chibar2(01) = 2030.20    Prob >= chibar2 = 0.0000 

 

The extra parameter here, expressed as logarithm alpha, is clearly different from 0 (based on the 

confidence interval), so this model would be preferable over poisson. Of course, we can still 

explore random slopes and cross-level interactions, etc.  

 

Overall, some of the same concerns apply here as was the case for logistic regression – for 

instance, we have to be cautious when interpreting interactions and examine predicted counts.   

In terms of variance, the level 1 residuals variance, which we assumed to be 3.29 in logit-based 

models, is assumed to be equal to predicted mean, so you need to find the value of average 

predicted count by generating predicted values, exponentiating them, and calculating their mean. 

You can use that number as level 1 variance in the formulas for percent of variance explained 

discussed above as well as when calculating the intraclass correlation coefficient.  

 

 
 


