SOCY7706: Longitudinal Data Analysis Instructor: Natasha Sarkisian

Panel Data Analysis: Fixed Effects Models

Fixed effects models are similar to the first difference model we considered for two wave data they also focus on the change component and get rid of any stable inter-individual differences. In fact, for two wave data, a fixed effects model is the same thing as a first difference model, while when there are more than two waves, these are considered to be two alternative ways to estimate a model focusing on change only, although fixed effects are used much more often and they perform much better when the data are unbalanced.

Overall, there are two kinds of information in panel data, regardless of the type: the crosssectional information reflected in the differences between subjects, and the time-series or withinsubject information reflected in the changes within subjects over time. Fixed effects models as well as first difference models focus on within-subject change only, but they control for differences across subjects. The key distinction is that in a first difference model, we focus on the change component by subtracting the previous wave observation from the current wave, while in the fixed effects model, we subtract the overall mean for that subject over time (that is, it's difference from the previous wave vs. difference from the overall mean over time).

We will continue using the same data for our example, using the already reshaped version where the empty rows have been dropped.

```
. xtset hhidpn wave
    panel variable: hhidpn (unbalanced)
    time variable: wave, 1 to 9, but with gaps
        delta: 1 unit
```

We will focus on predicting hours of help given to parents. Note that at this point, before proceeding to multivariate analyses, you should start with examining your variables for normality (use histogram, qnorm, and ladder, gladder, and qladder commands) and check the relationships between your dependent variable and each continuous predictor for linearity (lowess is a good tool for that). When necessary, apply transformations and proceed with transformed variables, but be aware of the balance between finding perfect transformations and having interpretable results.

While it is possible to use ordinary multiple regression techniques on panel data, they are usually not appropriate because of non-independence of observations (multiple observations that come from the same person have something in common), heteroskedasticity (both across time and across units), and autocorrelation. To avoid the problems of heteroscedasticity across units, we estimate a model that allows for each person to have its own intercept – a fixed effects model:

```
. xtreg rallparhelptw rworkhours80 rpoorhealth rmarried rtotalpar rsiblog hchildlg
female age minority raedyrs, fe
note: female omitted because of collinearity
note: age omitted because of collinearity
note: raedyrs omitted because of collinearity
Fixed-effects (within) regression Number of obs = 30541
Group variable: hhidpn Number of groups = 6243
```

R-sq: within = 0.0243 between = 0.0067 overall = 0.0134		Obs per grou F(6,24292)	avg = max =	1 4.9 9 100.87
corr(u_i, Xb) = -0.1592		Prob > F	=	0.0000
rallparhel~w Coef.	Std.Err. t	P> t [9	5% Conf. In	terval]
<pre>rworkhours80 0193467 rpoorhealth .0792176 rmarried 6578103 rtotalpar 52481 rsiblog 5767981 hchildlg .3859163 female (omitted) age (omitted) minority (omitted) raedyrs (omitted) cons 3.786918 </pre>	.0798801 0.99 .1342641 -4.90 .0384257 -13.66 .1841559 -3.13 .1720502 2.24	0.3210 0.0009 0.0006 0.0029 0.025 .0	773524 209763 001268 377549 486873 .	0164512 2357876 3946443 4494933 2158412 7231454 .523076
sigma_u 2.6483618 sigma_e 3.5375847 rho .35916136	(fraction of varian	nce due to u_i)	
F test that all u_i=0:	F(6242, 24292) =	2.37	Prob > F =	0.0000

Note that all time-invariant variables were automatically omitted.

Since we have multiple lines of data for each person, we should also adjust standard errors for clustering – that will take care of non-independence of observation. In this case, we also have multiple individuals in the same household, so we will adjust for the household (if there are multiple levels of clustering, we pick the higher one):

	(within) regr e: hhidpn		oorhealth	Number Number	of obs = of groups = group: min = avg =	30546 6246	dlg, fe
corr(u_i, Xb)	= -0.1593	(Std.	Err. adju	Prob >	7) = F = 4638 cluster		
 rallparhel~w	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]	
rtotalpar rsiblog hchildlg	.0790409 657813 5247729 5768106 .3856857	.1811515 .0573825 .2257471	0.91 -3.63 -9.15 -2.56 2.07	0.362 0.000 0.000 0.011 0.038	0228081 090951 -1.012956 6372698 -1.019382 .0211446 2.890903	.2490328 3026699 4122759 1342388 .7502268	
sigma_e	2.6480962 3.5374433 .35913361	(fraction	of varia	nce due t	.o u_i)		

Although the person-level intercepts are not presented in the output, we would get the same model if we ran a regular OLS model with a dummy variable for each person -- it will not run in

Stata IC, however, because of too many dummy variables (over 6000). These individual-specific intercepts can also be viewed as part of the decomposed residuals:

 $Y_{it} = \alpha + Xit\beta + u_i + e_{it}$ where u_i is the effect of person i and e_{it} is the residual effect for time point t within that person. In a fixed effects model, each of person residuals u_i is assigned a specific value – it's a fixed intercept for each individual. Because person-level intercepts are essentially separate independent variables in a fixed effects models, these intercepts are allowed to be correlated with the independent variables in the model –e.g., in our output we have

 $corr(u_i, Xb) = -0.1593$

What this means is that we do not use our independent variables to explain person-specific effects – they are just set aside and we focus on explaining change over time. One big advantage of doing this is that we eliminate all person-specific effects, including those that we could not explicitly model with the variables at hand. So that way, we control for the influence of both observable and unobservable individual-level factors, and we can focus explicitly on change over time. A disadvantage, however, is that the data on cross-sectional variation are available but not used in estimating independent variables' effects.

As a preliminary step to estimating a fixed effects model, it is usually helpful to estimate a fully unconditional model:

. xtreg rallparhelptw, fe					
Fixed-effects (within) reg	gression		Number of	obs =	32727
Group variable: hhidpn			Number of	groups =	6588
R-sq: within $= 0.0000$			Obs per g	roup: min =	1
between = 0.0009				avg =	5.0
overall = .				max =	. 9
			F(0,26139) =	0.00
corr(u_i, Xb) = .			Prob > F	=	•
rallparhel~w Coef.				-	Interval]
_cons 1.652933	.0199706	82.77	0.000	1.61379	
sigma_u 2.6511079 sigma_e 3.6127964 rho .35000687					
F test that all u_i=0:	F(6587, 2613	39) =	2.44	Prob >	F = 0.0000

Its most important function is to provide information about outcome variability at each of the two levels. Sigma_e will provide information about level-1 (across time) variability, and sigma_u will provide information on level-2 (across individuals) variability. So running this model allows us to decompose the variance in the dependent variable into variance components - into within-group and between-group variance (although they are expressed as standard deviations – to get variances, we'd have to square them). This model does not explain anything, but it allows us to evaluate whether there is variation in group means (here, person-specific means), and how much of it. That's why it is always a good idea to run this basic model when starting the analyses – it's the null model of our regression analysis. If we find that there is no significant variation across individuals, then there is no need for a fixed effects model because individuals are pretty much the same. That significance test is the F test below the model.

As we already learned earlier, the proportion of variance due to group-level variation in means is also known as the intraclass correlation coefficient (ICC) and can be calculated as

$$\label{eq:rho} \begin{split} \rho &= sigma_u^2 / \left(sigma_u^2 + sigma_e^2\right) \\ . \ \text{di} \ 2.6511079^22 \ / \ (2.6511079^22 \ + \ 3.6127964^{2}) \\ .35000689 \end{split}$$

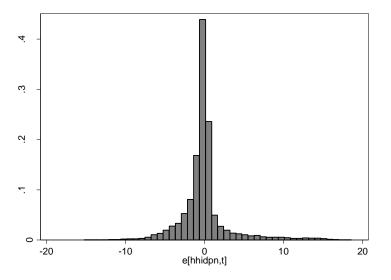
which is the rho number in the xtreg table. So 35% of the total variance in hours of help to parents is due to person-specific effects.

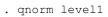
Diagnostics

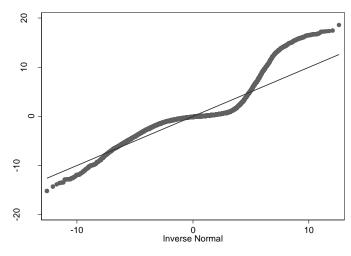
Predict command after xtreg, fe allows us to get predicted values and residuals. It allows the following options:

xb	xb, fitted values; the default
stdp	standard error of the fitted values
ue	u_i + e_it, the combined residual
xbu	xb + u_i, prediction including effect
u	u_i, the fixed- or random-error component
е	e it, the overall error component

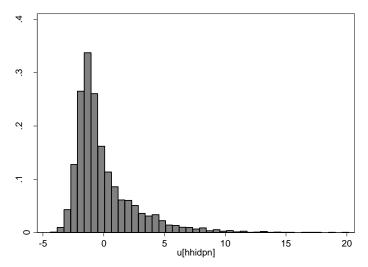
So to obtain two sets of residuals, level 1 (e) and level 2 (u), we run:

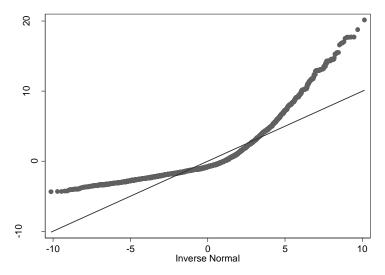

```
. qui xtreg rallparhelptw rworkhours80 rpoorhealth rmarried rtotalpar rsiblog hchildlg, fe cluster(hhid)
```


```
. predict level1, e (24130 missing values generated)
```


. predict level2, u (24130 missing values generated)

We can use these residuals to conduct regression diagnostics – e.g., examine normality: . histogram level1


```
(bin=44, start=-15.196963, width=.76734705)
```

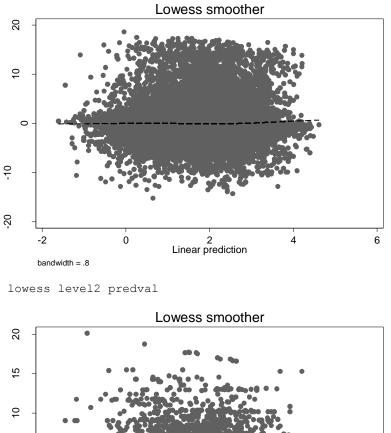



. histogram level2 (bin=44, start=-4.3855634, width=.55776229)

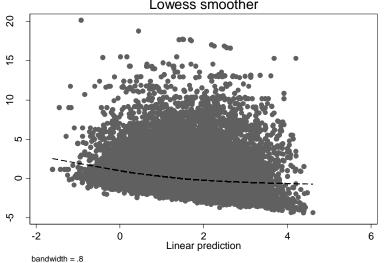
. qnorm level2

Next, let's look at linearity; we should do this for each continuous predictor: . lowess level1 rtotalpar

If you find that you need to introduce a quadratic effect to better model nonlinear (quadratic) relationships, you would need to first group mean center the variable and then generate a quadratic term:


```
bysort hhidpn: egen rworkhours80_m=mean(rworkhours80) \ gen rworkhours80_diff=
rworkhours80- rworkhours80_m
gen rworkhours80_diff2= rworkhours80_diff^2
```

Then both rworkhours80_diff and rworkhours80_diff2 will be used in the model simultaneously to model the quadratic relationship. (See "Identifying Non-linearities In Fixed Effects Models" article by Craig T. McIntosh and Wolfram Schlenker.)


We can also obtain predicted values and examine distribution of residuals against these values; this allows us to assess whether there is heteroskedasticity.

. predict predval, xb (11215 missing values generated)

. lowess level1 predval

. lowess level2 predval

In fixed effects model, level 2 residuals are not a random variable, they are all individual dummies in a sense, so we do not make much of an assumption about them - in fact, they can be correlated with independent variables, and we are not concerned about heteroskedasticity. This will be more of an issue for random effects models, however.

We can apply all the OLS diagnostic tools to the model with many dummies if we have enough system resources to estimate it – which would be easier if our dataset contained fewer units, of course. For more information on OLS diagnostics, see SOCY7704 class notes at http://www.sarkisian.net/socy7704.

Fixed Effects Model versus First Differences Model

Let's compare this fixed effects model to a first differences model.

First differences model:

$$X_{it} - X_{i,t-1} \longrightarrow Y_{it} - Y_{i,t-1}$$

Fixed effects model:

$$X_{it} - \overline{X}_i \longrightarrow Y_{it} - \overline{Y}_i$$

. reg D.(rallparhelptw rworkhours80 rpoorhealth rmarried rtotalpar rsiblog hchildlg), cluster(hhid)

Linear regress	sion	(Std.	Err. adju	isted fo	Number of obs F(6, 4221) Prob > F R-squared Root MSE r 4222 cluster	$= 1.63 \\ = 0.1348 \\ = 0.0004 \\ = 4.4523$
D. rallparhel~w	Coef.	Robust Std. Err.			[95% Conf.	Interval]
rworkhours80 D1.		.0018505	-2.43	0.015	0081324	0008764
rpoorhealth D1.		.0908495	1.08	0.282	0803022	.2759233
rmarried D1.		.1854965	-0.72	0.470	4977313	.2296101
rtotalpar D1.		.0815175	0.09	0.927	1523654	.1672688
rsiblog D1.		.2086947	-0.17	0.868	4437894	.3745136
hchildlg D1.		.2236533	1.36	0.175	1348365	.7421198
_cons	.3333509	.0245212	13.59	0.000	.2852765	.3814252

Since the data are not balanced, however, we would prefer the fixed effects model.

Let's compare first difference and FE for two waves – that is when we expect them to be identical.

. preserve

. keep if wave<3

<pre>(41753 observa . xtreg rallpa > dlg , fe Fixed-effects Group variable</pre>	arhelptw rwork (within) regr	hours80 rpo	orhealth	Number	d rtotalpar rs of obs = of groups =	11327
	= 0.0021 $ = 0.0027 $ $ = 0.0033$			-	r group: min = avg = max =	1.9 2
corr(u_i, Xb)	= -0.0706			F(6,52 Prob >	23) = F =	
rallparhel~w	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
rsiblog hchildlg _cons	.0261088 0947894 1342923 3294339 .2345638 1.745728	.0032143 .159492 .3190668 .1066734 .6821365 .3881181 1.254244	-1.26 -0.48 0.60	0.208 0.629 0.546	2865623 7202937 3434168	
sigma_u sigma_e rho		(fraction	of varia	nce due	to u_i)	
F test that al	i=0:	F(6097, 522	3) =	1.44	Prob >	F = 0.0000
> ldlg), nocor				h rmarri	ed rtotalpar r Number of obs	= 5229
	178.031928 83089.2185				F(6, 5223) Prob > F R-squared Adj R-squared	= 0.0829 = 0.0021
Total	83267.2505	5229 15.9	241252		Root MSE	
D. rallparhel~w	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
rworkhours80 D1.		.0032143	-2.85	0.004	0154486	002846
rpoorhealth D1.		.159492	0.16	0.870	2865623	.3387798
rmarried D1.		.3190668	-0.30	0.766	7202937	.5307149
rtotalpar D1.	1342923	.1066734	-1.26	0.208	3434168	.0748321
rsiblog D1.	3294339	.6821365	-0.48	0.629	-1.666707	1.007839
hchildlg D1.		.3881181	0.60	0.546	52631	.9954377

. restore

Replicating a fixed effects model by subtracting "group means"

Since fixed effects is based on "mean-differencing" the data (that's why it is also called the "within" estimator), we can replicate the results by subtracting person-specific means:

```
. xtreg rallparhelptw rworkhours80 rpoorhealth rmarried rtotalpar rsiblog hchildlg ,
fe cluster(hhid)
Fixed-effects (within) regression
                                                                    30546
                                             Number of obs
                                                               =
Group variable: hhidpn
                                             Number of groups =
                                                                     6246
R-sq: within = 0.0243
                                             Obs per group: min =
                                                                      1
      between = 0.0067
                                                         avg =
                                                                      4.9
                                                                     9
      overall = 0.0134
                                                           max =
                                             F(6,4637) = 51.22
Prob > F = 0.0000
corr(u i, Xb) = -0.1593
                             (Std. Err. adjusted for 4638 clusters in hhid)
_____
           Robust
rallparhel~w | Coef. Std. Err.
                                       t P>|t|
                                                      [95% Conf. Interval]
------
                               _____
                                                  _____
                                                            _____
rworkhours80 |-.0193476.0017652-10.960.000-.0228081-.0158871rpoorhealth |.0790409.08670950.910.362-.090951.2490328rmarried |-.657813.1811515-3.630.000-1.012956-.3026699
  rtotalpar | -.5247729 .0573825 -9.15 0.000 -.6372698 -.4122759
   rsiblog | -.5768106 .2257471 -2.56 0.011 -1.019382 -.1342388
hchildlg | .3856857 .1859452 2.07 0.038 .0211446 .7502268
_cons | 3.786839 .4569993 8.29 0.000 2.890903 4.682775
_____
    sigma u | 2.6480962
    sigma_e | 3.5374433
      rho | .35913361 (fraction of variance due to u i)
                      _____
. for var rallparhelptw rworkhours80 rpoorhealth rmarried rtotalpar rsiblog hchildlg:
bysort hhidpn: eqen Xm=mean(X) if e(sample) \ gen Xdiff=X-Xm
-> bysort hhidpn: eqen rallparhelptwm=mean(rallparhelptw) if e(sample)
(24130 missing values generated)
-> gen rallparhelptwdiff=rallparhelptw-rallparhelptwm
(24130 missing values generated)
-> bysort hhidpn: egen rworkhours80m=mean(rworkhours80) if e(sample)
(24130 missing values generated)
-> gen rworkhours80diff=rworkhours80-rworkhours80m
(24130 missing values generated)
-> bysort hhidpn: eqen rpoorhealthm=mean(rpoorhealth) if e(sample)
(24130 missing values generated)
-> gen rpoorhealthdiff=rpoorhealth-rpoorhealthm
(24130 missing values generated)
-> bysort hhidpn: egen rmarriedm=mean(rmarried) if e(sample)
(24130 missing values generated)
-> gen rmarrieddiff=rmarried-rmarriedm
(24130 missing values generated)
-> bysort hhidpn: egen rtotalparm=mean(rtotalpar) if e(sample)
(24130 missing values generated)
```

-> gen rtotalpardiff=rtotalpar-rtotalparm (24130 missing values generated)

-> bysort hhidpn: egen rsiblogm=mean(rsiblog) if e(sample) (24130 missing values generated)

-> gen rsiblogdiff=rsiblog-rsiblogm (24130 missing values generated)

-> bysort hhidpn: egen hchildlgm=mean(hchildlg) if e(sample) (24130 missing values generated)

-> gen hchildlgdiff=hchildlg-hchildlgm (24130 missing values generated)

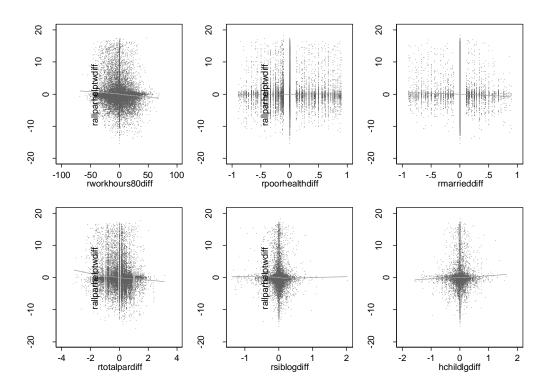
. reg rallparhelptwdiff rworkhours 80 diff rpoorhealthdiff rmarrieddiff rtotalpardiff rsiblogdiff hchildlgdiff , cluster(hhid)

Linear regression

Numbe	er	of	obs	=	30546
F (6,	46	537)	=	51.22
Prob	>	F		=	0.0000
R-sq	uar	red		=	0.0243
Root	MS	SΕ		=	3.1551

(Std. Err. adjusted for 4638 clusters in hhid)

 rallparhel~f	Coef.	Robust Std. Err.	tt	P> t	[95% Conf.	Interval]
<pre>rworkhours~f rpoorhealt~f rmarrieddiff rtotalpard~f rsiblogdiff hchildlgdiff _cons </pre>	0193476	.0017652	-10.96	0.000	0228081	0158871
	.0790409	.0867095	0.91	0.362	090951	.2490328
	657813	.1811515	-3.63	0.000	-1.012956	30267
	5247729	.0573825	-9.15	0.000	6372698	4122759
	5768106	.2257471	-2.56	0.011	-1.019382	1342388
	.3856857	.1859452	2.07	0.038	.0211446	.7502268
	-3.10e-09	1.28e-09	-2.42	0.016	-5.62e-09	-5.86e-10


One advantage of this specification is that we are using standard OLS with these variables – therefore, any diagnostics available with OLS could be used here as well (again, see SC704 notes for more detail), e.g. multicollinearity:

. vif

Variable	VIF	1/VIF
<pre>rtotalpard~f rworkhours~f rmarrieddiff rpoorhealt~f hchildlgdiff rsiblogdiff </pre>	1.13 1.12 1.03 1.02 1.01 1.00	0.886661 0.894452 0.968216 0.980188 0.986749 0.997080
Mean VIF	1.05	

Or linearity:

. mrunning rallparhelptwdiff rworkhours 80 diff rpoorhealth diff rmarrieddiff rtotalpardiff rsiblogdiff hchildl
gdiff

Note, however, that any transformations would have to be applied prior to mean-differencing the variables. Thus, diagnostics that rely on transforming variables (e.g., boxtid command) or testing interactions (fitint) won't always produce accurate results.

Just like we manually created mean-differenced variables, we can ask Stata to create a meandifferenced dataset for us using xtdata command. Make sure to save your dataset before doing that, though, because the data stored in memory will be lost once you transform the dataset:

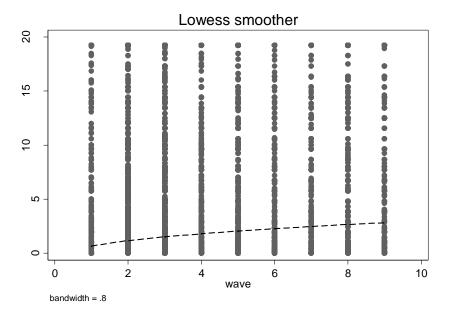
```
. xtdata rallparhelptw rworkhours80 rpoorhealth rmarried rtotalpar rsiblog hchildlg, fe clear
```

. reg rallparhelptw rworkhours80 rpoorhealth rmarried rtotalpar rsiblog hchildlg

Source	SS	df	MS		Number of obs	
Model Residual	7573.82015 304003.09		2.30336 9545856		F(6, 30539) Prob > F R-squared Adj R-squared	$= 0.0000 \\ = 0.0243$
Total	311576.91	30545 10.2	2005863		Root MSE	= 3.1551
rallparhel~w	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>rworkhours80 rpoorhealth rmarried rtotalpar rsiblog hchildlg _cons </pre>	0193476 .0790409 657813 5247729 5768106 .3856857 3.786839	.0013175 .0712347 .119747 .0342702 .1642443 .1534408 .3349614	-14.69 1.11 -5.49 -15.31 -3.51 2.51 11.31	0.000 0.267 0.000 0.000 0.000 0.012 0.000	0219299 060582 8925222 5919439 8987362 .0849353 3.130301	0167653 .2186638 4231038 4576019 2548849 .6864361 4.443377

Assymmetric Fixed Effects

So far, we have been assuming that an increase and a decrease in a given predictor's value would produce a symmetric response – that's the same assumption that we considered for a two time period example. If we are not willing to make that assumption or would like to test it, we can separate a given predictor into two variables – one including only increases (with the other values set to 0) and the other one only decreases. We do, however, need some special approaches for estimating such a model – e.g., see "Asymmetric Fixed-effects Models for Panel Data" article by Paul D. Allison (Socius 2019).


Two-Way Fixed Effects

In addition to the one-way fixed effects model that we just estimated, we could also consider estimating a two-way fixed-effects model. It is a good idea in most cases to include time into the model when estimating a fixed-effects model. Unfortunately, Stata does not automatically estimated two-way FE models – we have to introduce wave dummies:

i.waveIwave_1-9 (naturally coded; _Iwave_1 omitted) Fixed-effects (within) regression Number of obs = 30546 Group variable: hhidpn Number of groups = 6246
Crown wariable, bhidph
Group variable: hhidpn Number of groups = 6246
R-sq: within = 0.0435 Obs per group: min = 1
between = 0.0288 avg = 4.9
overall = 0.0365 max = 9
F(14, 4637) = 44.56
$corr(u_i, Xb) = -0.0199$ $Prob > F = 0.0000$
(Std. Err. adjusted for 4638 clusters in hhid)
Robust
rallparhel~w Coef. Std. Err. t P> t [95% Conf. Interval]
rworkhours80 0074452 .0017754 -4.19 0.00001092580039646
rpoorhealth 0455057 .0853449 -0.53 0.5942128224 .121811
rmarried 5600425 .1773223 -3.16 0.00290767852124064
rtotalpar .021109 .0663923 0.32 0.7511090516 .1512695
rsiblog 3169884 .2216861 -1.43 0.1537515985 .1176218
hchildlg .122697 .1934373 0.63 0.5262565321 .5019261
_Iwave_2 .5832997 .0620318 9.40 0.000 .461688 .7049115
_Iwave_3 .9157041 .0740675 12.36 0.000 .7704966 1.060912
_Iwave_4 1.266869 .0896387 14.13 0.000 1.091134 1.442603
Iwave_4 1.266869.089638714.130.0001.0911341.442603Iwave_5 1.202117.098185312.240.0001.0096271.394607Iwave_6 1.704193.121517614.020.0001.465961.942425Iwave_7 2.032625.141620314.350.0001.7549822.310268
_Iwave_6 1.704193 .1215176 14.02 0.000 1.46596 1.942425
_Iwave_7 2.032625 .1416203 14.35 0.000 1.754982 2.310268
_Iwave_8 2.171453 .1639864 13.24 0.000 1.849961 2.492944
_Iwave_9 2.145707 .1811296 11.85 0.000 1.790607 2.500807
cons 1.613513 .4600734 3.51 0.000 .71155 2.515475
sigma_u 2.5653
sigma_e 3.5030799
rho .34906895 (fraction of variance due to u_i)

It looks like on average, there is an increase in number of hours of help over time, so we could consider modeling it as a linear trend. Let's examine a lowess plot:

.lowess rallparhelptw wave

. xtreg rallparhelptw rworkhours80 rpoorhealth rmarried rtotalpar rsiblog hchildlg wave, fe cluster(hhid)

Fixed-effects (within) regr Group variable: hhidpn	ression			of obs = of groups =	
R-sq: within = 0.0411 between = 0.0257 overall = 0.0338			Obs per	group: min = avg = max =	4.9
corr(u_i, Xb) = -0.0235			F(7,463 Prob >		66.59 0.0000
	(Std.	Err. adju	sted for	4638 cluster	s in hhid)
 rallparhel~w Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>rworkhours80 0072974 rpoorhealth 0389903 rmarried 5673026 rtotalpar .0036739 rsiblog 2868556 hchildlg .1460003 wave .2868391cons 1.481042</pre>		-0.46 -3.22 0.06 -1.30 0.76	0.000	2062471 913215	.1282664 2213903 .1334108 .14668 .5247826 .3231283
sigma_u 2.5692546 sigma_e 3.5069475 rho .34926754	(fraction	of variar	nce due t	o u_i)	

To test whether it is appropriate to assume a linear trend, we test this model against the previous one in terms of its fit. We will use Bayesian Information Criterion (BIC) to compare models:

. estat ic

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
.	30546	-78813.1	-78172.16	7	156358.3	156416.6

Note: N=Obs used in calculating BIC; see [R] BIC note

. qui xi: xtreg rallparhelptw rworkhours80 rpoorhealth rmarried rtotalpar rsiblog hchildlg i.wave, fe cluster(hhid)

. estat ic

	, ,	· /	AIC	
			156296.1	

Note: N=Obs used in calculating BIC; see [R] BIC note

BIC difference:

```
. di 156416.6-156412.7
3.9
```

The model with smaller BIC has better fit, and the strength of evidence in its favor is evaluated as follows:

BIC Difference	Evidence
0-2	Weak
2-6	Positive
6-10	Strong
>10	Very strong

So in this case, the model with dummies has a somewhat better fit as it has smaller BIC and the difference is 3.9, but the evidence in its favor is not strong. So linear trend could still be a reasonable choice.

Autocorrelation

So far, we have dealt with two problems of panel data -- heteroskedasticity across units and nonindependence of observations. One problem that might be remaining is autocorrelation, that is, correlation between residuals at a given wave and the ones for the previous one. To test for autocorrelation:

. net search xtserial

Click on st0039 from <u>http://www.stata-journal.com/software/sj3-2</u> and install

```
. xtserial rallparhelptw rworkhours80 rpoorhealth rmarried rtotalpar rsiblog hchildlg
Wooldridge test for autocorrelation in panel data
H0: no first-order autocorrelation
F( 1, 4558) = 34.757
Prob > F = 0.0000
```

This test focuses on residuals from a first difference model (ΔY regressed on ΔX). Here, the hypothesis of no first order autocorrelation is rejected; therefore, we would want a model explicitly accounting for autoregressive error term.

```
We can use xtregar models that assume that:
y_it = a + x_it * B + u_i + e_it
where e_{it} = rho * e_{i,t-1} + z_{it} with |rho| < 1
. xtregar rallparhelptw rworkhours80 rpoorhealth rmarried rtotalpar rsiblog
hchildlg, fe lbi
FE (within) regression with AR(1) disturbances Number of obs = 24300
Group variable: hhidpn
                                                            Number of groups =
                                                                                              5800
R-sq: within = 0.0079
                                                  Obs per group: min =
                                                                                                   1
                                                               Obs per group: min =
avg = 4
max =
        between = 0.0000
                                                                                                 4.2
        overall = 0.0021
                                                                                                     8
                                                             F(6,18494) = 24.42
Prob > F = 0.0000
corr(u i, Xb) = -0.1672
 _____
                                                       _____
rallparhel~w | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____+
rworkhours80 | -.0124486 .0018924 -6.58 0.000 -.0161579 -.0087393

      Importanticut sol |
      -.0124400
      .0010924
      -0.38
      0.000
      -.0161579
      -.0087393

      rpoorhealth |
      .1305854
      .0915099
      1.43
      0.154
      -.0487824
      .3099532

      rmarried |
      -.444861
      .1778864
      -2.50
      0.012
      -.7935348
      -.0961872

      rtotalpar |
      -.3642803
      .0512597
      -7.11
      0.000
      -.4647541
      -.2638066

      rsiblog |
      .0112739
      .2059205
      0.05
      0.956
      -.3923493
      .4148972

      hchildlg |
      .6969819
      .2383535
      2.92
      0.003
      .229787
      1.164177

      __cons |
      2.193055
      .3245314
      6.76
      0.000
      1.556943
      2.829166

_____
      rho ar |
                    .24444167
      sigma u | 3.0974642
      sigma e | 3.6788507
     rho fov | .41483009 (fraction of variance because of u i)
______
F test that all u i=0: F(5799,18494) = 1.70 Prob > F = 0.0000
modified Bhargava et al. Durbin-Watson = 1.5724782
Baltagi-Wu LBI = 2.0213388
```

Xtregar also offers additional tests for autocorrelation, based on Durbin-Watson statistic—we used lbi option to obtain those. A value of the modified Durbin-Watson statistic or Baltagi-Wu LBI-statistic of 2 indicates no autocorrelation (the values can be between 0 and 4). As a rough rule of thumb, values below 1 mean you should definitely correct for serial correlation. Small values indicate successive error terms are positively correlated. You can also find critical values for some specific numbers of cases (N), time points (T), and number of estimated parameters (k) here: http://www.stata.com/statalist/archive/2010-08/msg00542.html. In contrast, with the values of such a statistic >2, successive error terms are, on average, different in value from one another, i.e., negatively correlated. This is much less common, however. In regressions, this can lead to an underestimation of the level of statistical significance.